A-framework-measuring-train.../models/BayesianModels/Bayesian3Conv3FC.py

67 lines
1.9 KiB
Python
Executable File

import math
import torch.nn as nn
from layers import (
BBB_Conv2d,
BBB_Linear,
BBB_LRT_Conv2d,
BBB_LRT_Linear,
FlattenLayer,
ModuleWrapper,
)
class BBB3Conv3FC(ModuleWrapper):
"""
Simple Neural Network having 3 Convolution
and 3 FC layers with Bayesian layers.
"""
def __init__(
self, outputs, inputs, priors, layer_type="lrt", activation_type="softplus"
):
super(BBB3Conv3FC, self).__init__()
self.num_classes = outputs
self.layer_type = layer_type
self.priors = priors
if layer_type == "lrt":
BBBLinear = BBB_LRT_Linear
BBBConv2d = BBB_LRT_Conv2d
elif layer_type == "bbb":
BBBLinear = BBB_Linear
BBBConv2d = BBB_Conv2d
else:
raise ValueError("Undefined layer_type")
if activation_type == "softplus":
self.act = nn.Softplus
elif activation_type == "relu":
self.act = nn.ReLU
else:
raise ValueError("Only softplus or relu supported")
self.conv1 = BBBConv2d(inputs, 32, 5, padding=2, bias=True, priors=self.priors)
self.act1 = self.act()
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv2 = BBBConv2d(32, 64, 5, padding=2, bias=True, priors=self.priors)
self.act2 = self.act()
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv3 = BBBConv2d(64, 128, 5, padding=1, bias=True, priors=self.priors)
self.act3 = self.act()
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2)
self.flatten = FlattenLayer(2 * 2 * 128)
self.fc1 = BBBLinear(2 * 2 * 128, 1000, bias=True, priors=self.priors)
self.act4 = self.act()
self.fc2 = BBBLinear(1000, 1000, bias=True, priors=self.priors)
self.act5 = self.act()
self.fc3 = BBBLinear(1000, outputs, bias=True, priors=self.priors)