2023-06-01 08:20:51 +00:00
|
|
|
import argparse
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
|
|
|
# Construct an argument parser
|
|
|
|
all_args = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
|
|
|
|
def makeArguments(arguments: ArgumentParser) -> dict:
|
|
|
|
all_args.add_argument("-b", "--Bayesian", action="store", dest="b",
|
2023-06-07 06:51:07 +00:00
|
|
|
type=int, choices=range(1,8), help="Bayesian model of size x")
|
2023-06-01 08:20:51 +00:00
|
|
|
all_args.add_argument("-f", "--Frequentist", action="store", dest="f",
|
2023-06-07 06:51:07 +00:00
|
|
|
type=int, choices=range(1,8), help="Frequentist model of size x")
|
2023-06-01 08:20:51 +00:00
|
|
|
all_args.add_argument("-E", "--EarlyStopping", action="store_true",
|
|
|
|
help="Early Stopping criteria")
|
|
|
|
all_args.add_argument("-e", "--EnergyBound", action="store_true",
|
|
|
|
help="Energy Bound criteria")
|
|
|
|
all_args.add_argument("-a", "--AccuracyBound", action="store_true",
|
|
|
|
help="Accuracy Bound criteria")
|
|
|
|
all_args.add_argument("-s", "--Save", action="store_true", help="Save model")
|
|
|
|
return vars(all_args.parse_args())
|