Efficiency-of-Neural-Archit.../main_frequentist.py

146 lines
4.9 KiB
Python
Raw Normal View History

2022-04-16 12:20:44 +00:00
from __future__ import print_function
import os
import data
import torch
#import utils
import pickle
import metrics
import argparse
import numpy as np
import torch.nn as nn
2023-06-01 08:20:51 +00:00
import amd_sample_draw
2022-04-16 12:20:44 +00:00
from datetime import datetime
import config_frequentist as cfg
from torch.optim import Adam, lr_scheduler
from models.NonBayesianModels.LeNet import LeNet
from models.NonBayesianModels.AlexNet import AlexNet
2023-06-01 08:20:51 +00:00
from stopping_crit import earlyStopping, energyBound, accuracyBound
2022-04-16 12:20:44 +00:00
from models.NonBayesianModels.ThreeConvThreeFC import ThreeConvThreeFC
# CUDA settings
2023-06-01 08:20:51 +00:00
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
2022-04-16 12:20:44 +00:00
def getModel(net_type, inputs, outputs,wide=cfg.wide):
if (net_type == 'lenet'):
return LeNet(outputs, inputs,wide)
elif (net_type == 'alexnet'):
return AlexNet(outputs, inputs)
elif (net_type == '3conv3fc'):
return ThreeConvThreeFC(outputs, inputs)
else:
raise ValueError('Network should be either [LeNet / AlexNet / 3Conv3FC')
def train_model(net, optimizer, criterion, train_loader):
train_loss = 0.0
net.train()
accs = []
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()*data.size(0)
accs.append(metrics.acc(output.detach(), target))
return train_loss, np.mean(accs)
def validate_model(net, criterion, valid_loader):
valid_loss = 0.0
net.eval()
accs = []
for data, target in valid_loader:
data, target = data.to(device), target.to(device)
output = net(data)
loss = criterion(output, target)
valid_loss += loss.item()*data.size(0)
accs.append(metrics.acc(output.detach(), target))
return valid_loss, np.mean(accs)
def run(dataset, net_type):
# Hyper Parameter settings
n_epochs = cfg.n_epochs
lr = cfg.lr
num_workers = cfg.num_workers
valid_size = cfg.valid_size
batch_size = cfg.batch_size
trainset, testset, inputs, outputs = data.getDataset(dataset)
train_loader, valid_loader, test_loader = data.getDataloader(
trainset, testset, valid_size, batch_size, num_workers)
net = getModel(net_type, inputs, outputs).to(device)
ckpt_dir = f'checkpoints/{dataset}/frequentist'
ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}_{cfg.wide}.pt'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir, exist_ok=True)
2023-06-01 08:20:51 +00:00
with open("stp", "r") as file:
stp = int(file.read())
with open("sav", "r") as file:
sav = int(file.read())
2022-04-16 12:20:44 +00:00
criterion = nn.CrossEntropyLoss()
optimizer = Adam(net.parameters(), lr=lr)
lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True)
#valid_loss_min = np.Inf
2023-06-07 06:51:07 +00:00
#if stp == 2:
early_stop = []
2022-04-16 12:20:44 +00:00
train_data = []
for epoch in range(1, n_epochs+1):
train_loss, train_acc = train_model(net, optimizer, criterion, train_loader)
valid_loss, valid_acc = validate_model(net, criterion, valid_loader)
lr_sched.step(valid_loss)
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
train_data.append([epoch,train_loss,train_acc,valid_loss,valid_acc])
print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f}'.format(
epoch, train_loss, train_acc, valid_loss, valid_acc))
2023-06-01 08:20:51 +00:00
if stp == 2:
2023-06-07 06:51:07 +00:00
#print('Using early stopping')
if earlyStopping(early_stop,valid_acc,epoch,cfg.sens) == 1:
break
2023-06-01 08:20:51 +00:00
elif stp == 3:
2023-06-07 06:51:07 +00:00
#print('Using energy bound')
if energyBound(cfg.energy_thrs) == 1:
break
2023-06-01 08:20:51 +00:00
elif stp == 4:
2023-06-07 06:51:07 +00:00
#print('Using accuracy bound')
if accuracyBound(train_acc,0.70) == 1:
break
2023-06-01 08:20:51 +00:00
else:
print('Training for {} epochs'.format(cfg.n_epochs))
if sav == 1:
# save model when finished
if epoch == n_epochs:
torch.save(net.state_dict(), ckpt_name)
2022-04-16 12:20:44 +00:00
with open("freq_exp_data_"+str(cfg.wide)+".pkl", 'wb') as f:
pickle.dump(train_data, f)
if __name__ == '__main__':
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Initial Time =", current_time)
parser = argparse.ArgumentParser(description = "PyTorch Frequentist Model Training")
parser.add_argument('--net_type', default='lenet', type=str, help='model')
2023-06-07 06:51:07 +00:00
parser.add_argument('--dataset', default='CIFAR10', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]')
2022-04-16 12:20:44 +00:00
args = parser.parse_args()
run(args.dataset, args.net_type)
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Final Time =", current_time)