Did some Python formatting
This commit is contained in:
parent
0f8ee842a3
commit
3c928cc350
|
@ -9,50 +9,21 @@ with (open("configuration.pkl", "rb")) as file:
|
|||
except EOFError:
|
||||
break
|
||||
|
||||
#with open("frq", "r") as file:
|
||||
# frq = int(file.read())
|
||||
|
||||
#with open("bay", "r") as file:
|
||||
# bay = int(file.read())
|
||||
# pickle_name = "{}_wattdata_{}.pkl".format(model_t,size)
|
||||
# print("GPU energy file config: {}".format(pickle_name))
|
||||
|
||||
#if frq == 1:
|
||||
# model_t = "freq"
|
||||
# with open("tmp", "r") as file:
|
||||
# size = float(file.read())
|
||||
|
||||
#if bay == 1:
|
||||
# model_t = "bayes"
|
||||
# with open("tmp", "r") as file:
|
||||
# size = int(file.read())
|
||||
|
||||
#pickle_name = "{}_wattdata_{}.pkl".format(model_t,size)
|
||||
#print("GPU energy file config: {}".format(pickle_name))
|
||||
|
||||
#print(cfg)
|
||||
# print(cfg)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
dataDump = []
|
||||
#var = True
|
||||
#pickling_on = open("wattdata.pickle","wb")
|
||||
while True:
|
||||
try:
|
||||
dataDump.append(get_sample_of_gpu())
|
||||
with open(cfg["pickle_path"], 'wb') as f:
|
||||
pickle.dump(dataDump, f)
|
||||
except EOFError:
|
||||
warn('Pickle ran out of space')
|
||||
size += 0.01
|
||||
finally:
|
||||
f.close()
|
||||
|
||||
#if retcode == 0:
|
||||
#break
|
||||
|
||||
#pickle.dump(dataDump, pickling_on)
|
||||
#pickling_on.close()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
dataDump = []
|
||||
while True:
|
||||
try:
|
||||
dataDump.append(get_sample_of_gpu())
|
||||
with open(cfg["pickle_path"], 'wb') as f:
|
||||
pickle.dump(dataDump, f)
|
||||
except EOFError:
|
||||
warn('Pickle ran out of space')
|
||||
finally:
|
||||
f.close()
|
||||
|
|
21
arguments.py
21
arguments.py
|
@ -7,16 +7,21 @@ all_args = argparse.ArgumentParser()
|
|||
|
||||
def makeArguments(arguments: ArgumentParser) -> dict:
|
||||
all_args.add_argument("-b", "--Bayesian", action="store", dest="b",
|
||||
type=int, choices=range(1,8), help="Bayesian model of size x")
|
||||
type=int, choices=range(1, 8),
|
||||
help="Bayesian model of size x")
|
||||
all_args.add_argument("-f", "--Frequentist", action="store", dest="f",
|
||||
type=int, choices=range(1,8), help="Frequentist model of size x")
|
||||
type=int, choices=range(1, 8),
|
||||
help="Frequentist model of size x")
|
||||
all_args.add_argument("-E", "--EarlyStopping", action="store_true",
|
||||
help="Early Stopping criteria")
|
||||
help="Early Stopping criteria")
|
||||
all_args.add_argument("-e", "--EnergyBound", action="store_true",
|
||||
help="Energy Bound criteria")
|
||||
help="Energy Bound criteria")
|
||||
all_args.add_argument("-a", "--AccuracyBound", action="store_true",
|
||||
help="Accuracy Bound criteria")
|
||||
all_args.add_argument("-s", "--Save", action="store_true", help="Save model")
|
||||
all_args.add_argument('--net_type', default='lenet', type=str, help='model = [lenet/AlexNet/3Conv3FC]')
|
||||
all_args.add_argument('--dataset', default='CIFAR10', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
help="Accuracy Bound criteria")
|
||||
all_args.add_argument("-s", "--Save", action="store_true",
|
||||
help="Save model")
|
||||
all_args.add_argument('--net_type', default='lenet', type=str,
|
||||
help='model = [lenet/AlexNet/3Conv3FC]')
|
||||
all_args.add_argument('--dataset', default='CIFAR10', type=str,
|
||||
help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
return vars(all_args.parse_args())
|
||||
|
|
|
@ -10,7 +10,6 @@ import numpy as np
|
|||
from datetime import datetime
|
||||
from torch.nn import functional as F
|
||||
from torch.optim import Adam, lr_scheduler
|
||||
from gpu_power_func import total_watt_consumed
|
||||
from models.BayesianModels.BayesianLeNet import BBBLeNet
|
||||
from models.BayesianModels.BayesianAlexNet import BBBAlexNet
|
||||
from models.BayesianModels.Bayesian3Conv3FC import BBB3Conv3FC
|
||||
|
@ -27,18 +26,23 @@ with (open("configuration.pkl", "rb")) as file:
|
|||
# CUDA settings
|
||||
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
def getModel(net_type, inputs, outputs, priors, layer_type, activation_type):
|
||||
if (net_type == 'lenet'):
|
||||
return BBBLeNet(outputs, inputs, priors, layer_type, activation_type,wide=cfg["model"]["size"])
|
||||
return BBBLeNet(outputs, inputs, priors, layer_type, activation_type,
|
||||
wide=cfg["model"]["size"])
|
||||
elif (net_type == 'alexnet'):
|
||||
return BBBAlexNet(outputs, inputs, priors, layer_type, activation_type)
|
||||
elif (net_type == '3conv3fc'):
|
||||
return BBB3Conv3FC(outputs, inputs, priors, layer_type, activation_type)
|
||||
return BBB3Conv3FC(outputs, inputs, priors, layer_type,
|
||||
activation_type)
|
||||
else:
|
||||
raise ValueError('Network should be either [LeNet / AlexNet / 3Conv3FC')
|
||||
raise ValueError('Network should be either [LeNet / AlexNet\
|
||||
/ 3Conv3FC')
|
||||
|
||||
|
||||
def train_model(net, optimizer, criterion, trainloader, num_ens=1, beta_type=0.1, epoch=None, num_epochs=None):
|
||||
def train_model(net, optimizer, criterion, trainloader, num_ens=1,
|
||||
beta_type=0.1, epoch=None, num_epochs=None):
|
||||
net.train()
|
||||
training_loss = 0.0
|
||||
accs = []
|
||||
|
@ -48,19 +52,21 @@ def train_model(net, optimizer, criterion, trainloader, num_ens=1, beta_type=0.1
|
|||
optimizer.zero_grad()
|
||||
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = torch.zeros(inputs.shape[0], net.num_classes, num_ens).to(device)
|
||||
outputs = torch.zeros(inputs.shape[0], net.num_classes,
|
||||
num_ens).to(device)
|
||||
|
||||
kl = 0.0
|
||||
for j in range(num_ens):
|
||||
net_out, _kl = net(inputs)
|
||||
kl += _kl
|
||||
outputs[:, :, j] = F.log_softmax(net_out, dim=1)
|
||||
|
||||
|
||||
kl = kl / num_ens
|
||||
kl_list.append(kl.item())
|
||||
log_outputs = utils.logmeanexp(outputs, dim=2)
|
||||
|
||||
beta = metrics.get_beta(i-1, len(trainloader), beta_type, epoch, num_epochs)
|
||||
beta = metrics.get_beta(i-1, len(trainloader), beta_type,
|
||||
epoch, num_epochs)
|
||||
loss = criterion(log_outputs, labels, kl, beta)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
@ -70,7 +76,8 @@ def train_model(net, optimizer, criterion, trainloader, num_ens=1, beta_type=0.1
|
|||
return training_loss/len(trainloader), np.mean(accs), np.mean(kl_list)
|
||||
|
||||
|
||||
def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=None, num_epochs=None):
|
||||
def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1,
|
||||
epoch=None, num_epochs=None):
|
||||
"""Calculate ensemble accuracy and NLL Loss"""
|
||||
net.train()
|
||||
valid_loss = 0.0
|
||||
|
@ -78,7 +85,8 @@ def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=
|
|||
|
||||
for i, (inputs, labels) in enumerate(validloader):
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = torch.zeros(inputs.shape[0], net.num_classes, num_ens).to(device)
|
||||
outputs = torch.zeros(inputs.shape[0], net.num_classes,
|
||||
num_ens).to(device)
|
||||
kl = 0.0
|
||||
for j in range(num_ens):
|
||||
net_out, _kl = net(inputs)
|
||||
|
@ -87,7 +95,8 @@ def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=
|
|||
|
||||
log_outputs = utils.logmeanexp(outputs, dim=2)
|
||||
|
||||
beta = metrics.get_beta(i-1, len(validloader), beta_type, epoch, num_epochs)
|
||||
beta = metrics.get_beta(i-1, len(validloader), beta_type,
|
||||
epoch, num_epochs)
|
||||
valid_loss += criterion(log_outputs, labels, kl, beta).item()
|
||||
accs.append(metrics.acc(log_outputs, labels))
|
||||
|
||||
|
@ -113,10 +122,12 @@ def run(dataset, net_type):
|
|||
trainset, testset, inputs, outputs = data.getDataset(dataset)
|
||||
train_loader, valid_loader, test_loader = data.getDataloader(
|
||||
trainset, testset, valid_size, batch_size, num_workers)
|
||||
net = getModel(net_type, inputs, outputs, priors, layer_type, activation_type).to(device)
|
||||
net = getModel(net_type, inputs, outputs, priors, layer_type,
|
||||
activation_type).to(device)
|
||||
|
||||
ckpt_dir = f'checkpoints/{dataset}/bayesian'
|
||||
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{cfg["model"]["size"]}.pt'
|
||||
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}\
|
||||
_{activation_type}_{cfg["model"]["size"]}.pt'
|
||||
|
||||
if not os.path.exists(ckpt_dir):
|
||||
os.makedirs(ckpt_dir, exist_ok=True)
|
||||
|
@ -126,33 +137,48 @@ def run(dataset, net_type):
|
|||
|
||||
criterion = metrics.ELBO(len(trainset)).to(device)
|
||||
optimizer = Adam(net.parameters(), lr=lr_start)
|
||||
lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True)
|
||||
#valid_loss_max = np.Inf
|
||||
#if stp == 2:
|
||||
lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6,
|
||||
verbose=True)
|
||||
# valid_loss_max = np.Inf
|
||||
# if stp == 2:
|
||||
early_stop = []
|
||||
train_data = []
|
||||
for epoch in range(n_epochs): # loop over the dataset multiple times
|
||||
|
||||
train_loss, train_acc, train_kl = train_model(net, optimizer, criterion, train_loader, num_ens=train_ens, beta_type=beta_type, epoch=epoch, num_epochs=n_epochs)
|
||||
valid_loss, valid_acc = validate_model(net, criterion, valid_loader, num_ens=valid_ens, beta_type=beta_type, epoch=epoch, num_epochs=n_epochs)
|
||||
train_loss, train_acc, train_kl = train_model(net, optimizer,
|
||||
criterion,
|
||||
train_loader,
|
||||
num_ens=train_ens,
|
||||
beta_type=beta_type,
|
||||
epoch=epoch,
|
||||
num_epochs=n_epochs)
|
||||
valid_loss, valid_acc = validate_model(net, criterion, valid_loader,
|
||||
num_ens=valid_ens,
|
||||
beta_type=beta_type,
|
||||
epoch=epoch,
|
||||
num_epochs=n_epochs)
|
||||
lr_sched.step(valid_loss)
|
||||
|
||||
|
||||
train_data.append([epoch,train_loss,train_acc,valid_loss,valid_acc])
|
||||
print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f} \ttrain_kl_div: {:.4f}'.format(
|
||||
epoch, train_loss, train_acc, valid_loss, valid_acc, train_kl))
|
||||
train_data.append([epoch, train_loss, train_acc, valid_loss,
|
||||
valid_acc])
|
||||
print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy:\
|
||||
{:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy:\
|
||||
{:.4f} \ttrain_kl_div: {:.4f}'.format(epoch, train_loss,
|
||||
train_acc, valid_loss,
|
||||
valid_acc, train_kl))
|
||||
|
||||
if stp == 2:
|
||||
print('Using early stopping')
|
||||
if earlyStopping(early_stop,valid_acc,epoch,cfg["model"]["sens"]) == 1:
|
||||
if earlyStopping(early_stop, valid_acc, epoch,
|
||||
cfg["model"]["sens"]) == 1:
|
||||
break
|
||||
elif stp == 3:
|
||||
elif stp == 3:
|
||||
print('Using energy bound')
|
||||
if energyBound(cfg["model"]["energy_thrs"]) == 1:
|
||||
break
|
||||
elif stp == 4:
|
||||
print('Using accuracy bound')
|
||||
if accuracyBound(train_acc,cfg.acc_thrs) == 1:
|
||||
if accuracyBound(train_acc, cfg.acc_thrs) == 1:
|
||||
break
|
||||
else:
|
||||
print('Training for {} epochs'.format(cfg["model"]["n_epochs"]))
|
||||
|
@ -162,9 +188,9 @@ def run(dataset, net_type):
|
|||
if epoch == cfg.n_epochs-1:
|
||||
torch.save(net.state_dict(), ckpt_name)
|
||||
|
||||
|
||||
with open("bayes_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
pickle.dump(train_data, f)
|
||||
pickle.dump(train_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
now = datetime.now()
|
||||
|
@ -174,4 +200,3 @@ if __name__ == '__main__':
|
|||
now = datetime.now()
|
||||
current_time = now.strftime("%H:%M:%S")
|
||||
print("Final Time =", current_time)
|
||||
|
||||
|
|
|
@ -2,15 +2,12 @@ from __future__ import print_function
|
|||
import os
|
||||
import data
|
||||
import torch
|
||||
#import utils
|
||||
import pickle
|
||||
import metrics
|
||||
import argparse
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
from datetime import datetime
|
||||
from torch.optim import Adam, lr_scheduler
|
||||
from gpu_power_func import total_watt_consumed
|
||||
from models.NonBayesianModels.LeNet import LeNet
|
||||
from models.NonBayesianModels.AlexNet import AlexNet
|
||||
from stopping_crit import earlyStopping, energyBound, accuracyBound
|
||||
|
@ -27,23 +24,24 @@ with (open("configuration.pkl", "rb")) as file:
|
|||
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
def getModel(net_type, inputs, outputs,wide=cfg["model"]["size"]):
|
||||
def getModel(net_type, inputs, outputs, wide=cfg["model"]["size"]):
|
||||
if (net_type == 'lenet'):
|
||||
return LeNet(outputs, inputs,wide)
|
||||
return LeNet(outputs, inputs, wide)
|
||||
elif (net_type == 'alexnet'):
|
||||
return AlexNet(outputs, inputs)
|
||||
elif (net_type == '3conv3fc'):
|
||||
return ThreeConvThreeFC(outputs, inputs)
|
||||
else:
|
||||
raise ValueError('Network should be either [LeNet / AlexNet / 3Conv3FC')
|
||||
raise ValueError('Network should be either [LeNet / AlexNet / \
|
||||
3Conv3FC')
|
||||
|
||||
|
||||
def train_model(net, optimizer, criterion, train_loader):
|
||||
train_loss = 0.0
|
||||
net.train()
|
||||
accs = []
|
||||
for data, target in train_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
for datas, target in train_loader:
|
||||
data, target = datas.to(device), target.to(device)
|
||||
optimizer.zero_grad()
|
||||
output = net(data)
|
||||
loss = criterion(output, target)
|
||||
|
@ -58,8 +56,8 @@ def validate_model(net, criterion, valid_loader):
|
|||
valid_loss = 0.0
|
||||
net.eval()
|
||||
accs = []
|
||||
for data, target in valid_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
for datas, target in valid_loader:
|
||||
data, target = datas.to(device), target.to(device)
|
||||
output = net(data)
|
||||
loss = criterion(output, target)
|
||||
valid_loss += loss.item()*data.size(0)
|
||||
|
@ -82,7 +80,8 @@ def run(dataset, net_type):
|
|||
net = getModel(net_type, inputs, outputs).to(device)
|
||||
|
||||
ckpt_dir = f'checkpoints/{dataset}/frequentist'
|
||||
ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}_{cfg["model"]["size"]}.pt'
|
||||
ckpt_name = f'checkpoints/{dataset}/frequentist/model\
|
||||
_{net_type}_{cfg["model"]["size"]}.pt'
|
||||
|
||||
if not os.path.exists(ckpt_dir):
|
||||
os.makedirs(ckpt_dir, exist_ok=True)
|
||||
|
@ -92,35 +91,41 @@ def run(dataset, net_type):
|
|||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = Adam(net.parameters(), lr=lr)
|
||||
lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True)
|
||||
#valid_loss_min = np.Inf
|
||||
#if stp == 2:
|
||||
lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6,
|
||||
verbose=True)
|
||||
# valid_loss_min = np.Inf
|
||||
# if stp == 2:
|
||||
early_stop = []
|
||||
train_data = []
|
||||
for epoch in range(1, n_epochs+1):
|
||||
|
||||
train_loss, train_acc = train_model(net, optimizer, criterion, train_loader)
|
||||
train_loss, train_acc = train_model(net, optimizer, criterion,
|
||||
train_loader)
|
||||
valid_loss, valid_acc = validate_model(net, criterion, valid_loader)
|
||||
lr_sched.step(valid_loss)
|
||||
|
||||
train_loss = train_loss/len(train_loader.dataset)
|
||||
valid_loss = valid_loss/len(valid_loader.dataset)
|
||||
|
||||
train_data.append([epoch,train_loss,train_acc,valid_loss,valid_acc])
|
||||
print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f}'.format(
|
||||
epoch, train_loss, train_acc, valid_loss, valid_acc))
|
||||
|
||||
train_data.append([epoch, train_loss, train_acc, valid_loss,
|
||||
valid_acc])
|
||||
print('Epoch: {} \tTraining Loss: {: .4f} \tTraining Accuracy: {: .4f}\
|
||||
\tValidation Loss: {: .4f} \tValidation Accuracy: {: .4f}\
|
||||
'.format(epoch, train_loss, train_acc, valid_loss, valid_acc))
|
||||
|
||||
if stp == 2:
|
||||
#print('Using early stopping')
|
||||
if earlyStopping(early_stop,valid_acc,epoch,cfg["model"]["sens"]) == 1:
|
||||
# print('Using early stopping')
|
||||
if earlyStopping(early_stop, valid_acc, epoch,
|
||||
cfg["model"]["sens"]) == 1:
|
||||
break
|
||||
elif stp == 3:
|
||||
#print('Using energy bound')
|
||||
elif stp == 3:
|
||||
# print('Using energy bound')
|
||||
if energyBound(cfg["model"]["energy_thrs"]) == 1:
|
||||
break
|
||||
elif stp == 4:
|
||||
#print('Using accuracy bound')
|
||||
if accuracyBound(train_acc,cfg["model"]["acc_thrs"]) == 1:
|
||||
# print('Using accuracy bound')
|
||||
if accuracyBound(train_acc,
|
||||
cfg["model"]["acc_thrs"]) == 1:
|
||||
break
|
||||
else:
|
||||
print('Training for {} epochs'.format(cfg["model"]["n_epochs"]))
|
||||
|
@ -129,10 +134,10 @@ def run(dataset, net_type):
|
|||
# save model when finished
|
||||
if epoch == n_epochs:
|
||||
torch.save(net.state_dict(), ckpt_name)
|
||||
|
||||
|
||||
with open("freq_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
pickle.dump(train_data, f)
|
||||
|
||||
pickle.dump(train_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
now = datetime.now()
|
||||
|
@ -142,4 +147,3 @@ if __name__ == '__main__':
|
|||
now = datetime.now()
|
||||
current_time = now.strftime("%H:%M:%S")
|
||||
print("Final Time =", current_time)
|
||||
|
||||
|
|
|
@ -12,30 +12,32 @@ def kill(proc_pid):
|
|||
proc.kill()
|
||||
process.kill()
|
||||
|
||||
|
||||
cfg = {
|
||||
"model": {"net_type": None, "type": None, "size": None, "layer_type": "lrt",
|
||||
"activation_type": "softplus", "priors": {
|
||||
'prior_mu': 0,
|
||||
'prior_sigma': 0.1,
|
||||
'posterior_mu_initial': (0, 0.1), # (mean, std) normal_
|
||||
'posterior_rho_initial': (-5, 0.1), # (mean, std) normal_
|
||||
},
|
||||
"n_epochs": 3,
|
||||
"sens": 1e-9,
|
||||
"energy_thrs": 10000,
|
||||
"acc_thrs": 0.99,
|
||||
"lr": 0.001,
|
||||
"num_workers": 4,
|
||||
"valid_size": 0.2,
|
||||
"batch_size": 256,
|
||||
"train_ens": 1,
|
||||
"valid_ens": 1,
|
||||
"beta_type": 0.1, # 'Blundell', 'Standard', etc. Use float for const value
|
||||
},
|
||||
"data": None,
|
||||
"stopping_crit": None,
|
||||
"save": None,
|
||||
"pickle_path": None,
|
||||
"model": {"net_type": None, "type": None, "size": None, "layer_type":
|
||||
"lrt", "activation_type": "softplus", "priors": {
|
||||
'prior_mu': 0,
|
||||
'prior_sigma': 0.1,
|
||||
'posterior_mu_initial': (0, 0.1), # (mean,std) normal_
|
||||
'posterior_rho_initial': (-5, 0.1), # (mean,std) normal_
|
||||
},
|
||||
"n_epochs": 100,
|
||||
"sens": 1e-9,
|
||||
"energy_thrs": 10000,
|
||||
"acc_thrs": 0.99,
|
||||
"lr": 0.001,
|
||||
"num_workers": 4,
|
||||
"valid_size": 0.2,
|
||||
"batch_size": 256,
|
||||
"train_ens": 1,
|
||||
"valid_ens": 1,
|
||||
"beta_type": 0.1, # 'Blundell','Standard',etc.
|
||||
# Use float for const value
|
||||
},
|
||||
"data": None,
|
||||
"stopping_crit": None,
|
||||
"save": None,
|
||||
"pickle_path": None,
|
||||
}
|
||||
|
||||
args = makeArguments(arguments.all_args)
|
||||
|
@ -46,10 +48,10 @@ if all(v is None for v in check):
|
|||
elif None in check:
|
||||
if args['f'] is not None:
|
||||
cmd = ["python", "main_frequentist.py"]
|
||||
cfg["model"]["type"] = "frequentist"
|
||||
cfg["model"]["type"] = "freq"
|
||||
elif args['b'] is not None:
|
||||
cmd = ["python", "main_bayesian.py"]
|
||||
cfg["model"]["type"] = "bayesian"
|
||||
cfg["model"]["type"] = "bayes"
|
||||
else:
|
||||
raise Exception("Only one argument allowed")
|
||||
|
||||
|
@ -69,20 +71,21 @@ elif args['AccuracyBound']:
|
|||
cfg["stopping_crit"] = 4
|
||||
else:
|
||||
cfg["stopping_crit"] = 1
|
||||
|
||||
|
||||
if args['Save']:
|
||||
cfg["save"] = 1
|
||||
else:
|
||||
cfg["save"] = 0
|
||||
|
||||
|
||||
cfg["pickle_path"] = "{}_wattdata_{}.pkl".format(cfg["model"]["type"],cfg["model"]["size"])
|
||||
|
||||
cfg["pickle_path"] = "{}_wattdata_{}.pkl".format(cfg["model"]["type"],
|
||||
cfg["model"]["size"])
|
||||
|
||||
with open("configuration.pkl", "wb") as f:
|
||||
pickle.dump(cfg, f)
|
||||
|
||||
#print(args)
|
||||
#print(cfg)
|
||||
# print(args)
|
||||
# print(cfg)
|
||||
|
||||
sleep(3)
|
||||
|
||||
|
@ -104,12 +107,12 @@ path = path.replace('\n', '')
|
|||
startWattCounter = 'python ' + path + '/amd_sample_draw.py'
|
||||
|
||||
|
||||
|
||||
p1 = sub.Popen(cmd)
|
||||
p2 = sub.Popen(startWattCounter.split(),stdin=sub.PIPE,stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
p3 = sub.Popen(cmd2,stdin=sub.PIPE,stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
p4 = sub.Popen(cmd3,stdin=sub.PIPE,stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
p5 = sub.Popen(cmd4,stdin=sub.PIPE,stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
p2 = sub.Popen(startWattCounter.split(), stdin=sub.PIPE, stdout=sub.PIPE,
|
||||
stderr=sub.PIPE)
|
||||
p3 = sub.Popen(cmd2, stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
p4 = sub.Popen(cmd3, stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
p5 = sub.Popen(cmd4, stdin=sub.PIPE, stdout=sub.PIPE, stderr=sub.PIPE)
|
||||
|
||||
retcode = p1.wait()
|
||||
print("Return code: {}".format(retcode))
|
||||
|
@ -119,4 +122,3 @@ kill(p2.pid)
|
|||
kill(p3.pid)
|
||||
kill(p4.pid)
|
||||
kill(p5.pid)
|
||||
|
||||
|
|
Loading…
Reference in New Issue