Solved killing pipes, renewed how training sampling works
This commit is contained in:
parent
44272d52a7
commit
7fa9a14303
|
@ -13,6 +13,7 @@ bayes_*
|
|||
times_*
|
||||
freq_*
|
||||
*.pkl
|
||||
*.txt
|
||||
bay
|
||||
frq
|
||||
sav
|
||||
|
|
|
@ -1,86 +1,44 @@
|
|||
import os
|
||||
import re
|
||||
import pickle
|
||||
import numpy as np
|
||||
from warnings import warn
|
||||
from gpu_power_func import get_sample_of_gpu
|
||||
|
||||
with open("frq", "r") as file:
|
||||
frq = int(file.read())
|
||||
with (open("configuration.pkl", "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
cfg = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
|
||||
with open("bay", "r") as file:
|
||||
bay = int(file.read())
|
||||
#with open("frq", "r") as file:
|
||||
# frq = int(file.read())
|
||||
|
||||
if frq == 1:
|
||||
model_t = "freq"
|
||||
with open("tmp", "r") as file:
|
||||
size = float(file.read())
|
||||
#with open("bay", "r") as file:
|
||||
# bay = int(file.read())
|
||||
|
||||
if bay == 1:
|
||||
model_t = "bayes"
|
||||
with open("tmp", "r") as file:
|
||||
size = int(file.read())
|
||||
#if frq == 1:
|
||||
# model_t = "freq"
|
||||
# with open("tmp", "r") as file:
|
||||
# size = float(file.read())
|
||||
|
||||
pickle_name = "{}_wattdata_{}.pkl".format(model_t,size)
|
||||
print("GPU energy file config: {}".format(pickle_name))
|
||||
#if bay == 1:
|
||||
# model_t = "bayes"
|
||||
# with open("tmp", "r") as file:
|
||||
# size = int(file.read())
|
||||
|
||||
def get_sample_of_gpu():
|
||||
from re import sub, findall
|
||||
import subprocess
|
||||
from subprocess import run
|
||||
#pickle_name = "{}_wattdata_{}.pkl".format(model_t,size)
|
||||
#print("GPU energy file config: {}".format(pickle_name))
|
||||
|
||||
no_graph = "NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running."
|
||||
no_version = "Failed to initialize NVML: Driver/library version mismatch"
|
||||
smi_string = run(['rocm-smi', '-P', '--showvoltage', '--showmemuse'], stdout=subprocess.PIPE)
|
||||
smi_string = smi_string.stdout.decode('utf-8')
|
||||
smi_string = smi_string.split("\n")
|
||||
smi_string = list(filter(lambda x: x, smi_string))
|
||||
if smi_string[0] == no_graph:
|
||||
raise Exception("It seems that no AMD GPU is installed")
|
||||
elif smi_string[0] == no_version:
|
||||
raise Exception("rocm-smi version mismatch")
|
||||
else:
|
||||
results= []
|
||||
gpuW0 = findall("[0-9]*\.[0-9]*",smi_string[2])
|
||||
gpuW1 = findall("[0-9]*\.[0-9]*",smi_string[4])
|
||||
gpuM0 = findall("[0-9]+",smi_string[7])
|
||||
gpuM1 = findall("[0-9]+",smi_string[9])
|
||||
gpuV0 = findall("[0-9]+",smi_string[13])
|
||||
gpuV1 = findall("[0-9]+",smi_string[14])
|
||||
results.append(float(gpuW0[0]) + float(gpuW1[0]))
|
||||
if len(gpuM0) == 2 and len(gpuM1) == 2:
|
||||
results.append(int(gpuM0[1]) + int(gpuM1[1]))
|
||||
elif len(gpuM0) == 2:
|
||||
results.append(gpuM0[1])
|
||||
elif len(gpuM1) == 2:
|
||||
results.append(gpuM1[1])
|
||||
results.append(int(gpuV0[1]) + int(gpuV1[1]))
|
||||
return results
|
||||
#for l in smi_string:
|
||||
#temp = findall("[0-9]*MiB | [0-9]*W",l)
|
||||
#if temp:
|
||||
#return temp
|
||||
#print(cfg)
|
||||
|
||||
def total_watt_consumed():
|
||||
with (open(pickle_name, "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
x = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
x = np.array(x)
|
||||
x = x[:,0]
|
||||
y = [float(re.findall("\d+.\d+",xi)[0]) for xi in x]
|
||||
return sum(y)
|
||||
|
||||
if __name__ == '__main__':
|
||||
dataDump = []
|
||||
#var = True
|
||||
#pickling_on = open("wattdata.pickle","wb")
|
||||
while True:
|
||||
#from run_service import retcode
|
||||
try:
|
||||
dataDump.append(get_sample_of_gpu())
|
||||
with open(pickle_name, 'wb') as f:
|
||||
with open(cfg["pickle_path"], 'wb') as f:
|
||||
pickle.dump(dataDump, f)
|
||||
except EOFError:
|
||||
warn('Pickle ran out of space')
|
||||
|
|
|
@ -17,4 +17,6 @@ def makeArguments(arguments: ArgumentParser) -> dict:
|
|||
all_args.add_argument("-a", "--AccuracyBound", action="store_true",
|
||||
help="Accuracy Bound criteria")
|
||||
all_args.add_argument("-s", "--Save", action="store_true", help="Save model")
|
||||
all_args.add_argument('--net_type', default='lenet', type=str, help='model = [lenet/AlexNet/3Conv3FC]')
|
||||
all_args.add_argument('--dataset', default='CIFAR10', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
return vars(all_args.parse_args())
|
||||
|
|
|
@ -1,45 +0,0 @@
|
|||
############### Configuration file for Bayesian ###############
|
||||
|
||||
import os
|
||||
layer_type = 'lrt' # 'bbb' or 'lrt'
|
||||
activation_type = 'softplus' # 'softplus' or 'relu'
|
||||
priors={
|
||||
'prior_mu': 0,
|
||||
'prior_sigma': 0.1,
|
||||
'posterior_mu_initial': (0, 0.1), # (mean, std) normal_
|
||||
'posterior_rho_initial': (-5, 0.1), # (mean, std) normal_
|
||||
}
|
||||
|
||||
n_epochs = 100
|
||||
sens = 1e-9
|
||||
energy_thrs = 100000
|
||||
acc_thrs = 0.99
|
||||
lr_start = 0.001
|
||||
num_workers = 4
|
||||
valid_size = 0.2
|
||||
batch_size = 256
|
||||
train_ens = 1
|
||||
valid_ens = 1
|
||||
beta_type = 0.1 # 'Blundell', 'Standard', etc. Use float for const value
|
||||
|
||||
|
||||
with open("bay", "r") as file:
|
||||
bay = int(file.read())
|
||||
|
||||
if bay == 1:
|
||||
with open("tmp", "r") as file:
|
||||
wide = int(file.read())
|
||||
|
||||
#if os.path.exists("tmp"):
|
||||
# os.remove("tmp")
|
||||
#else:
|
||||
# raise Exception("Tmp file not found")
|
||||
|
||||
print("Bayesian configured to run with width: {}".format(wide))
|
||||
|
||||
|
||||
#if os.path.exists("bay"):
|
||||
# os.remove("bay")
|
||||
#else:
|
||||
# raise Exception("Bay file not found")
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
############### Configuration file for Frequentist ###############
|
||||
|
||||
import os
|
||||
n_epochs = 100
|
||||
sens = 1e-9
|
||||
energy_thrs = 10000
|
||||
acc_thrs = 0.99
|
||||
lr = 0.001
|
||||
num_workers = 4
|
||||
valid_size = 0.2
|
||||
batch_size = 256
|
||||
|
||||
with open("frq", "r") as file:
|
||||
frq = int(file.read())
|
||||
|
||||
if frq == 1:
|
||||
with open("tmp", "r") as file:
|
||||
wide = int(file.read())
|
||||
|
||||
if os.path.exists("tmp"):
|
||||
os.remove("tmp")
|
||||
else:
|
||||
raise Exception("Tmp file not found")
|
||||
|
||||
print("Frequentist configured to run with width: {}".format(wide))
|
||||
|
||||
|
||||
|
||||
#if os.path.exists("frq"):
|
||||
# os.remove("frq")
|
||||
#else:
|
||||
# raise Exception("Frq file not found")
|
|
@ -0,0 +1,54 @@
|
|||
import os
|
||||
import re
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_sample_of_gpu():
|
||||
from re import sub, findall
|
||||
import subprocess
|
||||
from subprocess import run
|
||||
|
||||
no_graph = "NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running."
|
||||
no_version = "Failed to initialize NVML: Driver/library version mismatch"
|
||||
smi_string = run(['rocm-smi', '-P', '--showvoltage', '--showmemuse'], stdout=subprocess.PIPE)
|
||||
smi_string = smi_string.stdout.decode('utf-8')
|
||||
smi_string = smi_string.split("\n")
|
||||
smi_string = list(filter(lambda x: x, smi_string))
|
||||
if smi_string[0] == no_graph:
|
||||
raise Exception("It seems that no AMD GPU is installed")
|
||||
elif smi_string[0] == no_version:
|
||||
raise Exception("rocm-smi version mismatch")
|
||||
else:
|
||||
results= []
|
||||
gpuW0 = findall("[0-9]*\.[0-9]*",smi_string[2])
|
||||
gpuW1 = findall("[0-9]*\.[0-9]*",smi_string[4])
|
||||
gpuM0 = findall("[0-9]+",smi_string[7])
|
||||
gpuM1 = findall("[0-9]+",smi_string[9])
|
||||
gpuV0 = findall("[0-9]+",smi_string[13])
|
||||
gpuV1 = findall("[0-9]+",smi_string[14])
|
||||
results.append(float(gpuW0[0]) + float(gpuW1[0]))
|
||||
if len(gpuM0) == 2 and len(gpuM1) == 2:
|
||||
results.append(int(gpuM0[1]) + int(gpuM1[1]))
|
||||
elif len(gpuM0) == 2:
|
||||
results.append(gpuM0[1])
|
||||
elif len(gpuM1) == 2:
|
||||
results.append(gpuM1[1])
|
||||
results.append(int(gpuV0[1]) + int(gpuV1[1]))
|
||||
return results
|
||||
#for l in smi_string:
|
||||
#temp = findall("[0-9]*MiB | [0-9]*W",l)
|
||||
#if temp:
|
||||
#return temp
|
||||
|
||||
def total_watt_consumed(pickle_name):
|
||||
with (open(pickle_name, "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
x = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
x = np.array(x)
|
||||
x = x[:,0]
|
||||
y = [float(re.findall("\d+.\d+",xi)[0]) for xi in x]
|
||||
return sum(y)
|
|
@ -4,24 +4,6 @@ import pickle
|
|||
import numpy as np
|
||||
from warnings import warn
|
||||
|
||||
with open("frq", "r") as file:
|
||||
frq = int(file.read())
|
||||
|
||||
with open("bay", "r") as file:
|
||||
bay = int(file.read())
|
||||
|
||||
if frq == 1:
|
||||
model_t = "freq"
|
||||
with open("tmp", "r") as file:
|
||||
size = float(file.read())
|
||||
|
||||
if bay == 1:
|
||||
model_t = "bayes"
|
||||
with open("tmp", "r") as file:
|
||||
size = int(file.read())
|
||||
|
||||
pickle_name = "{}_wattdata_{}.pkl".format(model_t,size)
|
||||
#print("GPU energy file config: {}".format(pickle_name))
|
||||
|
||||
def get_sample_of_gpu():
|
||||
from re import sub, findall
|
||||
|
@ -45,6 +27,7 @@ def get_sample_of_gpu():
|
|||
#if temp:
|
||||
#return temp
|
||||
|
||||
|
||||
def total_watt_consumed():
|
||||
with open(pickle_name, 'rb') as f:
|
||||
x = pickle.load(f)
|
||||
|
@ -53,12 +36,12 @@ def total_watt_consumed():
|
|||
y = [int(re.findall("\d+",xi)[0]) for xi in x]
|
||||
return sum(y)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
dataDump = []
|
||||
#var = True
|
||||
#pickling_on = open("wattdata.pickle","wb")
|
||||
while True:
|
||||
#from run_service import retcode
|
||||
try:
|
||||
dataDump.append(get_sample_of_gpu())
|
||||
with open(pickle_name, 'wb') as f:
|
||||
|
|
|
@ -6,24 +6,30 @@ import utils
|
|||
import torch
|
||||
import pickle
|
||||
import metrics
|
||||
import argparse
|
||||
import numpy as np
|
||||
import amd_sample_draw
|
||||
import config_bayesian as cfg
|
||||
from datetime import datetime
|
||||
from torch.nn import functional as F
|
||||
from torch.optim import Adam, lr_scheduler
|
||||
from gpu_power_func import total_watt_consumed
|
||||
from models.BayesianModels.BayesianLeNet import BBBLeNet
|
||||
from models.BayesianModels.BayesianAlexNet import BBBAlexNet
|
||||
from models.BayesianModels.Bayesian3Conv3FC import BBB3Conv3FC
|
||||
from stopping_crit import earlyStopping, energyBound, accuracyBound
|
||||
|
||||
with (open("configuration.pkl", "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
cfg = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
|
||||
|
||||
# CUDA settings
|
||||
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def getModel(net_type, inputs, outputs, priors, layer_type, activation_type):
|
||||
if (net_type == 'lenet'):
|
||||
return BBBLeNet(outputs, inputs, priors, layer_type, activation_type,wide=cfg.wide)
|
||||
return BBBLeNet(outputs, inputs, priors, layer_type, activation_type,wide=cfg["model"]["size"])
|
||||
elif (net_type == 'alexnet'):
|
||||
return BBBAlexNet(outputs, inputs, priors, layer_type, activation_type)
|
||||
elif (net_type == '3conv3fc'):
|
||||
|
@ -91,18 +97,18 @@ def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=
|
|||
def run(dataset, net_type):
|
||||
|
||||
# Hyper Parameter settings
|
||||
layer_type = cfg.layer_type
|
||||
activation_type = cfg.activation_type
|
||||
priors = cfg.priors
|
||||
layer_type = cfg["model"]["layer_type"]
|
||||
activation_type = cfg["model"]["activation_type"]
|
||||
priors = cfg["model"]["priors"]
|
||||
|
||||
train_ens = cfg.train_ens
|
||||
valid_ens = cfg.valid_ens
|
||||
n_epochs = cfg.n_epochs
|
||||
lr_start = cfg.lr_start
|
||||
num_workers = cfg.num_workers
|
||||
valid_size = cfg.valid_size
|
||||
batch_size = cfg.batch_size
|
||||
beta_type = cfg.beta_type
|
||||
train_ens = cfg["model"]["train_ens"]
|
||||
valid_ens = cfg["model"]["valid_ens"]
|
||||
n_epochs = cfg["model"]["n_epochs"]
|
||||
lr_start = cfg["model"]["lr"]
|
||||
num_workers = cfg["model"]["num_workers"]
|
||||
valid_size = cfg["model"]["valid_size"]
|
||||
batch_size = cfg["model"]["batch_size"]
|
||||
beta_type = cfg["model"]["beta_type"]
|
||||
|
||||
trainset, testset, inputs, outputs = data.getDataset(dataset)
|
||||
train_loader, valid_loader, test_loader = data.getDataloader(
|
||||
|
@ -110,15 +116,13 @@ def run(dataset, net_type):
|
|||
net = getModel(net_type, inputs, outputs, priors, layer_type, activation_type).to(device)
|
||||
|
||||
ckpt_dir = f'checkpoints/{dataset}/bayesian'
|
||||
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{cfg.wide}.pt'
|
||||
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{cfg["model"]["size"]}.pt'
|
||||
|
||||
if not os.path.exists(ckpt_dir):
|
||||
os.makedirs(ckpt_dir, exist_ok=True)
|
||||
|
||||
with open("stp", "r") as file:
|
||||
stp = int(file.read())
|
||||
with open("sav", "r") as file:
|
||||
sav = int(file.read())
|
||||
stp = cfg["stopping_crit"]
|
||||
sav = cfg["save"]
|
||||
|
||||
criterion = metrics.ELBO(len(trainset)).to(device)
|
||||
optimizer = Adam(net.parameters(), lr=lr_start)
|
||||
|
@ -139,19 +143,19 @@ def run(dataset, net_type):
|
|||
epoch, train_loss, train_acc, valid_loss, valid_acc, train_kl))
|
||||
|
||||
if stp == 2:
|
||||
#print('Using early stopping')
|
||||
if earlyStopping(early_stop,train_acc,epoch,cfg.sens) == 1:
|
||||
print('Using early stopping')
|
||||
if earlyStopping(early_stop,valid_acc,epoch,cfg["model"]["sens"]) == 1:
|
||||
break
|
||||
elif stp == 3:
|
||||
#print('Using energy bound')
|
||||
if energyBound(cfg.energy_thrs) == 1:
|
||||
print('Using energy bound')
|
||||
if energyBound(cfg["model"]["energy_thrs"]) == 1:
|
||||
break
|
||||
elif stp == 4:
|
||||
#print('Using accuracy bound')
|
||||
if accuracyBound(cfg.acc_thrs) == 1:
|
||||
print('Using accuracy bound')
|
||||
if accuracyBound(train_acc,cfg.acc_thrs) == 1:
|
||||
break
|
||||
else:
|
||||
print('Training for {} epochs'.format(cfg.n_epochs))
|
||||
print('Training for {} epochs'.format(cfg["model"]["n_epochs"]))
|
||||
|
||||
if sav == 1:
|
||||
# save model when finished
|
||||
|
@ -159,18 +163,14 @@ def run(dataset, net_type):
|
|||
torch.save(net.state_dict(), ckpt_name)
|
||||
|
||||
|
||||
with open("bayes_exp_data_"+str(cfg.wide)+".pkl", 'wb') as f:
|
||||
with open("bayes_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
pickle.dump(train_data, f)
|
||||
|
||||
if __name__ == '__main__':
|
||||
now = datetime.now()
|
||||
current_time = now.strftime("%H:%M:%S")
|
||||
print("Initial Time =", current_time)
|
||||
parser = argparse.ArgumentParser(description = "PyTorch Bayesian Model Training")
|
||||
parser.add_argument('--net_type', default='lenet', type=str, help='model')
|
||||
parser.add_argument('--dataset', default='CIFAR10', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
args = parser.parse_args()
|
||||
run(args.dataset, args.net_type)
|
||||
run(cfg["data"], cfg["model"]["net_type"])
|
||||
now = datetime.now()
|
||||
current_time = now.strftime("%H:%M:%S")
|
||||
print("Final Time =", current_time)
|
||||
|
|
|
@ -116,7 +116,7 @@ def run(dataset, net_type):
|
|||
break
|
||||
elif stp == 4:
|
||||
#print('Using accuracy bound')
|
||||
if accuracyBound(train_acc,0.70) == 1:
|
||||
if accuracyBound(train_acc,cfg.acc_thrs) == 1:
|
||||
break
|
||||
else:
|
||||
print('Training for {} epochs'.format(cfg.n_epochs))
|
||||
|
@ -136,7 +136,7 @@ if __name__ == '__main__':
|
|||
print("Initial Time =", current_time)
|
||||
parser = argparse.ArgumentParser(description = "PyTorch Frequentist Model Training")
|
||||
parser.add_argument('--net_type', default='lenet', type=str, help='model')
|
||||
parser.add_argument('--dataset', default='CIFAR10', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
parser.add_argument('--dataset', default='MNIST', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
args = parser.parse_args()
|
||||
run(args.dataset, args.net_type)
|
||||
now = datetime.now()
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
#!/bin/env bash
|
||||
|
||||
radeontop -b 08 -d - > $1
|
|
@ -1,7 +1,7 @@
|
|||
import pickle
|
||||
|
||||
gpu_data = []
|
||||
with (open("freq_wattdata_1.0.pkl", "rb")) as openfile:
|
||||
with (open("bayesian_wattdata_3.pkl", "rb")) as openfile:
|
||||
while True:
|
||||
try:
|
||||
gpu_data = pickle.load(openfile)
|
||||
|
|
|
@ -1,6 +1,13 @@
|
|||
import amd_sample_draw
|
||||
import pickle
|
||||
from time import sleep
|
||||
from gpu_power_func import total_watt_consumed
|
||||
|
||||
with (open("configuration.pkl", "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
cfg = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
|
||||
def earlyStopping(early_stopping: list, train_acc: float, epoch: int, sensitivity: float=1e-9):
|
||||
early_stopping.append(train_acc)
|
||||
|
@ -20,16 +27,17 @@ def earlyStopping(early_stopping: list, train_acc: float, epoch: int, sensitivit
|
|||
|
||||
def energyBound(threshold: float=100000.0):
|
||||
try:
|
||||
energy = amd_sample_draw.total_watt_consumed()
|
||||
energy = total_watt_consumed(cfg["pickle_path"])
|
||||
except Exception as e:
|
||||
sleep(3)
|
||||
energy = amd_sample_draw.total_watt_consumed()
|
||||
energy = total_watt_consumed(cfg["pickle_path"])
|
||||
print("Energy used: {}".format(energy))
|
||||
if energy > threshold:
|
||||
print("Energy bound achieved")
|
||||
return 1
|
||||
return 0
|
||||
|
||||
|
||||
def accuracyBound(train_acc: float, threshold: float=0.99):
|
||||
if train_acc >= threshold:
|
||||
print("Accuracy bound achieved")
|
||||
|
|
Loading…
Reference in New Issue