import sys sys.path.append("..") import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter import utils from metrics import calculate_kl as KL_DIV import config_bayesian as cfg from ..misc import ModuleWrapper class BBBConv2d(ModuleWrapper): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, priors=None): super(BBBConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = (kernel_size, kernel_size) self.stride = stride self.padding = padding self.dilation = dilation self.groups = 1 self.use_bias = bias self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if priors is None: priors = { 'prior_mu': 0, 'prior_sigma': 0.1, 'posterior_mu_initial': (0, 0.1), 'posterior_rho_initial': (-3, 0.1), } self.prior_mu = priors['prior_mu'] self.prior_sigma = priors['prior_sigma'] self.posterior_mu_initial = priors['posterior_mu_initial'] self.posterior_rho_initial = priors['posterior_rho_initial'] self.W_mu = Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size)) self.W_rho = Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size)) if self.use_bias: self.bias_mu = Parameter(torch.Tensor(out_channels)) self.bias_rho = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias_mu', None) self.register_parameter('bias_rho', None) self.reset_parameters() def reset_parameters(self): self.W_mu.data.normal_(*self.posterior_mu_initial) self.W_rho.data.normal_(*self.posterior_rho_initial) if self.use_bias: self.bias_mu.data.normal_(*self.posterior_mu_initial) self.bias_rho.data.normal_(*self.posterior_rho_initial) def forward(self, x, sample=True): self.W_sigma = torch.log1p(torch.exp(self.W_rho)) if self.use_bias: self.bias_sigma = torch.log1p(torch.exp(self.bias_rho)) bias_var = self.bias_sigma ** 2 else: self.bias_sigma = bias_var = None act_mu = F.conv2d( x, self.W_mu, self.bias_mu, self.stride, self.padding, self.dilation, self.groups) act_var = 1e-16 + F.conv2d( x ** 2, self.W_sigma ** 2, bias_var, self.stride, self.padding, self.dilation, self.groups) act_std = torch.sqrt(act_var) if self.training or sample: eps = torch.empty(act_mu.size()).normal_(0, 1).to(self.device) return act_mu + act_std * eps else: return act_mu def kl_loss(self): kl = KL_DIV(self.prior_mu, self.prior_sigma, self.W_mu, self.W_sigma) if self.use_bias: kl += KL_DIV(self.prior_mu, self.prior_sigma, self.bias_mu, self.bias_sigma) return kl