from __future__ import print_function import os import data import torch #import utils import pickle import metrics import argparse import numpy as np import torch.nn as nn import gpu_sample_draw from datetime import datetime import config_frequentist as cfg from torch.optim import Adam, lr_scheduler from models.NonBayesianModels.LeNet import LeNet from models.NonBayesianModels.AlexNet import AlexNet from models.NonBayesianModels.ThreeConvThreeFC import ThreeConvThreeFC # CUDA settings device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def getModel(net_type, inputs, outputs,wide=cfg.wide): if (net_type == 'lenet'): return LeNet(outputs, inputs,wide) elif (net_type == 'alexnet'): return AlexNet(outputs, inputs) elif (net_type == '3conv3fc'): return ThreeConvThreeFC(outputs, inputs) else: raise ValueError('Network should be either [LeNet / AlexNet / 3Conv3FC') def train_model(net, optimizer, criterion, train_loader): train_loss = 0.0 net.train() accs = [] for data, target in train_loader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = net(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item()*data.size(0) accs.append(metrics.acc(output.detach(), target)) return train_loss, np.mean(accs) def validate_model(net, criterion, valid_loader): valid_loss = 0.0 net.eval() accs = [] for data, target in valid_loader: data, target = data.to(device), target.to(device) output = net(data) loss = criterion(output, target) valid_loss += loss.item()*data.size(0) accs.append(metrics.acc(output.detach(), target)) return valid_loss, np.mean(accs) def run(dataset, net_type): # Hyper Parameter settings n_epochs = cfg.n_epochs lr = cfg.lr num_workers = cfg.num_workers valid_size = cfg.valid_size batch_size = cfg.batch_size trainset, testset, inputs, outputs = data.getDataset(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs).to(device) ckpt_dir = f'checkpoints/{dataset}/frequentist' ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}_{cfg.wide}.pt' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) criterion = nn.CrossEntropyLoss() optimizer = Adam(net.parameters(), lr=lr) lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True) #valid_loss_min = np.Inf #early_stop = [] #thrs=1e-9 train_data = [] for epoch in range(1, n_epochs+1): train_loss, train_acc = train_model(net, optimizer, criterion, train_loader) valid_loss, valid_acc = validate_model(net, criterion, valid_loader) lr_sched.step(valid_loss) train_loss = train_loss/len(train_loader.dataset) valid_loss = valid_loss/len(valid_loader.dataset) train_data.append([epoch,train_loss,train_acc,valid_loss,valid_acc]) print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f}'.format( epoch, train_loss, train_acc, valid_loss, valid_acc)) #early_stop.append(valid_acc) #if epoch % 4 == 0 and epoch > 0: # print("Value 1: {} >= {}, Value 2: {} >= {}, Value 2: {} >= {}".format(early_stop[0],valid_acc-thrs,early_stop[1],valid_acc-thrs,early_stop[2],valid_acc-thrs)) # if abs(early_stop[0]) >= valid_acc-thrs and abs(early_stop[1]) >= valid_acc-thrs and abs(early_stop[2]) >= valid_acc-thrs: # break # early_stop = [] #if train_acc >= 0.99: # break #if gpu_sample_draw.total_watt_consumed() > 100000: # break # save model when finished #if epoch == n_epochs: #torch.save(net.state_dict(), ckpt_name) with open("freq_exp_data_"+str(cfg.wide)+".pkl", 'wb') as f: pickle.dump(train_data, f) if __name__ == '__main__': now = datetime.now() current_time = now.strftime("%H:%M:%S") print("Initial Time =", current_time) parser = argparse.ArgumentParser(description = "PyTorch Frequentist Model Training") parser.add_argument('--net_type', default='lenet', type=str, help='model') parser.add_argument('--dataset', default='MNIST', type=str, help='dataset = [MNIST/CIFAR10/CIFAR100]') args = parser.parse_args() run(args.dataset, args.net_type) now = datetime.now() current_time = now.strftime("%H:%M:%S") print("Final Time =", current_time)