import os import torch import numpy as np from torch.nn import functional as F import config_bayesian as cfg # cifar10 classes cifar10_classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def logmeanexp(x, dim=None, keepdim=False): """Stable computation of log(mean(exp(x))""" if dim is None: x, dim = x.view(-1), 0 x_max, _ = torch.max(x, dim, keepdim=True) x = x_max + torch.log(torch.mean(torch.exp(x - x_max), dim, keepdim=True)) return x if keepdim else x.squeeze(dim) # check if dimension is correct # def dimension_check(x, dim=None, keepdim=False): # if dim is None: # x, dim = x.view(-1), 0 # return x if keepdim else x.squeeze(dim) def adjust_learning_rate(optimizer, lr): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" for param_group in optimizer.param_groups: param_group['lr'] = lr def save_array_to_file(numpy_array, filename): file = open(filename, 'a') shape = " ".join(map(str, numpy_array.shape)) np.savetxt(file, numpy_array.flatten(), newline=" ", fmt="%.3f") file.write("\n") file.close()