Efficiency-of-Neural-Archit.../Mixtures/temp_gmm.py

51 lines
1.6 KiB
Python
Executable File

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import torch
import gmm
def create_synthetic_data(num_gaussians, num_features, num_samples, means, vars):
assert len(means[0]) == len(vars[0]) == num_features
samples = []
for g in range(num_gaussians):
loc = torch.tensor(means[g]).float()
covariance_matrix = torch.eye(num_features).float() * torch.tensor(vars[g]).float()
dist = torch.distributions.multivariate_normal.MultivariateNormal(
loc = loc, covariance_matrix=covariance_matrix)
for i in range(num_samples//num_gaussians):
sample = dist.sample()
samples.append(sample.unsqueeze(0))
samples = torch.cat(samples, axis=0)
return samples
def plot_data(data, y=None):
if y is not None:
for sample, target in zip(data, y):
if target==0:
plt.scatter(*sample, color='blue')
elif target==1:
plt.scatter(*sample, color='red')
elif target==2:
plt.scatter(*sample, color='green')
else:
for sample in data:
plt.scatter(*sample, color='black')
plt.show(block=False)
plt.pause(2)
plt.close()
means = [[1, 4], [5, 5], [2, -1]] # list of task's means(which is mean of each feature)
vars = [[0.1, 0.1], [0.05, 0.4], [0.5, 0.2]] # list of task's vars(which is var of each feature)
data = create_synthetic_data(3, 2, 600, means, vars) # shape: (total_samples, num_features)
plot_data(data)
model = gmm.GaussianMixture(3, 2) # (num_gaussians, num_features)
model.fit(data)
y = model.predict(data)
plot_data(data, y)