Modified to accept different noise types epochs, and alphas
This commit is contained in:
parent
03f03d59d9
commit
67fcdcdab2
|
@ -62,11 +62,15 @@ for data in data_types:
|
|||
eff_data = dict(gpu_ene_data)
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
if model == 'fre':
|
||||
alpha = 100
|
||||
elif model == 'bay':
|
||||
alpha = 1000
|
||||
for size in range(1, max_size):
|
||||
for i in range(0, max_epoch):
|
||||
eff_data[data][model][size][i] = \
|
||||
(gpu_exp_data[data][model][size]['acc'][i] /
|
||||
spl_ene_data[data][model][size][i]) * 100
|
||||
spl_ene_data[data][model][size][i]) * alpha
|
||||
|
||||
|
||||
for data, o_data in zip(data_types, o_data_types):
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import matplotlib.pyplot as plt
|
||||
import functions as aux
|
||||
|
||||
model_type = 'BCNN' # BCNN or LeNet
|
||||
dataset = 'MNIST' # MNIST or CIFAR
|
||||
model_type = 'LeNet' # BCNN or LeNet
|
||||
dataset = 'CIFAR' # MNIST or CIFAR
|
||||
|
||||
eff_df = aux.load_pickle("efficiency_data.pkl")
|
||||
|
||||
|
@ -19,10 +19,10 @@ lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias',
|
|||
'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight',
|
||||
'fc3.bias']
|
||||
|
||||
all_noises = [0.1, 0.25, 0.5, 0.75, 0.99]
|
||||
all_noises = [0.1, 0.25, 0.5, 0.75, 0.99, 'raleigh', 'erlang', 'exponential', 'uniform', 'impulse']
|
||||
|
||||
for size in range(1, 2):
|
||||
plt.plot(eff_df['MNIST']['LeNet'][size],
|
||||
plt.plot(eff_df[dataset][model_type][size],
|
||||
label='Efficiency')
|
||||
plt.plot(entropy_data[dataset][model_type][size],
|
||||
label='Entropy at noise 0.0')
|
||||
|
|
|
@ -11,18 +11,30 @@ models_lenet_mnist = aux.load_pickle("lenet_data_mnist_noisy.pkl")
|
|||
entropy_data = {'CIFAR':
|
||||
{'BCNN':
|
||||
{0.1: None, 0.25: None,
|
||||
0.5: None, 0.75: None, 0.99: None},
|
||||
0.5: None, 0.75: None, 0.99: None,
|
||||
'raleigh': None, 'erlang': None,
|
||||
'exponential': None, 'uniform': None,
|
||||
'impulse': None},
|
||||
'LeNet':
|
||||
{0.1: None, 0.25: None,
|
||||
0.5: None, 0.75: None, 0.99: None},
|
||||
0.5: None, 0.75: None, 0.99: None,
|
||||
'raleigh': None, 'erlang': None,
|
||||
'exponential': None, 'uniform': None,
|
||||
'impulse': None},
|
||||
},
|
||||
'MNIST':
|
||||
{'BCNN':
|
||||
{0.1: None, 0.25: None,
|
||||
0.5: None, 0.75: None, 0.99: None},
|
||||
0.5: None, 0.75: None, 0.99: None,
|
||||
'raleigh': None, 'erlang': None,
|
||||
'exponential': None, 'uniform': None,
|
||||
'impulse': None},
|
||||
'LeNet':
|
||||
{0.1: None, 0.25: None,
|
||||
0.5: None, 0.75: None, 0.99: None},
|
||||
0.5: None, 0.75: None, 0.99: None,
|
||||
'raleigh': None, 'erlang': None,
|
||||
'exponential': None, 'uniform': None,
|
||||
'impulse': None},
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -45,7 +57,7 @@ bayes_keys = ['conv1.W_mu', 'conv1.W_rho',
|
|||
|
||||
"""
|
||||
|
||||
noise_levels = [0.1, 0.25, 0.5, 0.75, 0.99]
|
||||
noise_levels = [0.1, 0.25, 0.5, 0.75, 0.99, 'raleigh', 'erlang', 'exponential', 'uniform', 'impulse']
|
||||
|
||||
bayes_keys = ['conv1.W_mu',
|
||||
'conv2.W_mu',
|
||||
|
|
Loading…
Reference in New Issue