Initial commit
This commit is contained in:
parent
51f5fcae5f
commit
cc92f4ce04
|
@ -0,0 +1,2 @@
|
|||
__pycache__/
|
||||
*.pkl
|
2
LICENSE
2
LICENSE
|
@ -1,4 +1,4 @@
|
|||
Copyright (c) 2024 TastyPancakes
|
||||
Copyright (c) 2024 Eduardo Cueto-Mendoza
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
||||
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
import functions as aux
|
||||
import statistics as st
|
||||
# import pandas as pd
|
||||
|
||||
data_types = ['mni', 'cif']
|
||||
model_types = ['fre', 'bay']
|
||||
|
||||
o_data_types = ['MNIST', 'CIFAR']
|
||||
o_model_types = ['LeNet', 'BCNN']
|
||||
|
||||
gpu_ene_data = aux.load_pickle("energy_gpu.pkl")
|
||||
cpu_ene_data = aux.load_pickle("energy_cpu.pkl")
|
||||
|
||||
gpu_exp_data = aux.load_pickle("result_gpu.pkl")
|
||||
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
for size in range(1, 8):
|
||||
gpu_ene_data[data][model][size] = \
|
||||
list(
|
||||
aux.split(gpu_ene_data[data][model][size], 100)
|
||||
)
|
||||
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
for size in range(1, 8):
|
||||
cpu_ene_data[data][model][size] = \
|
||||
list(
|
||||
aux.split(cpu_ene_data[data][model][size], 100)
|
||||
)
|
||||
|
||||
spl_ene_data = dict(gpu_ene_data)
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
for size in range(1, 8):
|
||||
for i in range(0, 100):
|
||||
spl_ene_data[data][model][size][i] = \
|
||||
gpu_ene_data[data][model][size][i] +\
|
||||
cpu_ene_data[data][model][size][i]
|
||||
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
for size in range(1, 8):
|
||||
for i in range(0, 100):
|
||||
spl_ene_data[data][model][size][i] = \
|
||||
sum(spl_ene_data[data][model][size][i])
|
||||
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
for size in range(1, 8):
|
||||
temp = []
|
||||
for i in range(0, 100):
|
||||
temp.append(
|
||||
# st.mean(spl_ene_data[data][model][size][0:i+1])
|
||||
sum(spl_ene_data[data][model][size][0:i+1])
|
||||
)
|
||||
spl_ene_data[data][model][size] = temp
|
||||
|
||||
eff_data = dict(gpu_ene_data)
|
||||
for data in data_types:
|
||||
for model in model_types:
|
||||
for size in range(1, 8):
|
||||
for i in range(0, 100):
|
||||
eff_data[data][model][size][i] = \
|
||||
(gpu_exp_data[data][model][size]['acc'][i] /
|
||||
spl_ene_data[data][model][size][i]) * 100
|
||||
|
||||
|
||||
for data, o_data in zip(data_types, o_data_types):
|
||||
eff_data[o_data] = \
|
||||
eff_data.pop(data)
|
||||
|
||||
|
||||
for o_data in o_data_types:
|
||||
for model, o_model in zip(model_types, o_model_types):
|
||||
eff_data[o_data][o_model] = \
|
||||
eff_data[o_data].pop(model)
|
||||
|
||||
# mul = pd.MultiIndex.from_product([[1, 2, 3, 4, 5, 6, 7],
|
||||
# ['bay', 'fre'], ['cif', 'mni']])
|
||||
|
||||
# eff_data = pd.DataFrame(eff_data)
|
||||
|
||||
aux.save_pickle("efficiency_data.pkl", eff_data)
|
|
@ -0,0 +1,87 @@
|
|||
import torch.linalg as alg
|
||||
import pickle
|
||||
import torch
|
||||
|
||||
|
||||
def square_matrix(tensor):
|
||||
tensor_size = tensor.size()
|
||||
if len(tensor_size) == 1:
|
||||
temp = torch.zeros([tensor_size[0],
|
||||
tensor_size[0]-1])
|
||||
return torch.cat((temp.T,
|
||||
tensor.reshape(1, tensor_size[0])))
|
||||
elif len(tensor_size) == 2:
|
||||
if tensor_size[0] > tensor_size[1]:
|
||||
temp = torch.zeros([tensor_size[0],
|
||||
tensor_size[0]-tensor_size[1]])
|
||||
return torch.cat((temp.T, tensor))
|
||||
elif tensor_size[0] < tensor_size[1]:
|
||||
temp = torch.zeros([tensor_size[1],
|
||||
tensor_size[1]-tensor_size[0]])
|
||||
return torch.cat((temp.T, tensor))
|
||||
else:
|
||||
return tensor
|
||||
elif len(tensor_size) > 2:
|
||||
temp_tensor = tensor.detach().clone()
|
||||
for i, x in enumerate(tensor):
|
||||
# print("i: {}".format(i))
|
||||
for j, t in enumerate(x):
|
||||
# print("j: {}".format(j))
|
||||
t_size = t.size()
|
||||
if t_size[0] > t_size[1]:
|
||||
temp = torch.zeros([t_size[0],
|
||||
t_size[0]-t_size[1]])
|
||||
temp_tensor[i][j] = torch.cat((temp.T, t))
|
||||
elif t_size[0] < t_size[1]:
|
||||
temp = torch.zeros([t_size[1],
|
||||
t_size[1]-t_size[0]])
|
||||
temp_tensor[i][j] = torch.cat((temp.T, t))
|
||||
else:
|
||||
temp_tensor[i][j] = t
|
||||
return temp_tensor
|
||||
|
||||
|
||||
def neumann_entropy(tensor):
|
||||
tensor_size = tensor.size()
|
||||
if len(tensor_size) == 1:
|
||||
return 0
|
||||
elif len(tensor_size) == 2:
|
||||
e = alg.eigvals(tensor)
|
||||
# temp_abs = torch.abs(e)
|
||||
temp_abs = e.real
|
||||
temp = torch.log(temp_abs)
|
||||
temp[temp == float("Inf")] = 0
|
||||
temp[temp == float("-Inf")] = 0
|
||||
return -1 * torch.sum(temp_abs * temp)
|
||||
elif len(tensor_size) > 2:
|
||||
for i, x in enumerate(tensor):
|
||||
for j, t in enumerate(x):
|
||||
e = alg.eigvals(t)
|
||||
# temp_abs = torch.abs(e)
|
||||
temp_abs = e.real
|
||||
temp = torch.log(temp_abs)
|
||||
temp[temp == float("Inf")] = 0
|
||||
temp[temp == float("-Inf")] = 0
|
||||
return -1 * torch.sum(temp_abs * temp)
|
||||
|
||||
|
||||
def load_pickle(fpath):
|
||||
with open(fpath, "rb") as f:
|
||||
data = pickle.load(f)
|
||||
return data
|
||||
|
||||
|
||||
def save_pickle(pickle_name, data_dump):
|
||||
with open(pickle_name, 'wb') as f:
|
||||
pickle.dump(data_dump, f)
|
||||
|
||||
|
||||
def chunks(lst, n):
|
||||
"""Yield successive n-sized chunks from lst."""
|
||||
for i in range(0, len(lst), n):
|
||||
yield lst[i:i + n]
|
||||
|
||||
|
||||
def split(lst, n):
|
||||
k, m = divmod(len(lst), n)
|
||||
return (lst[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n))
|
|
@ -0,0 +1,32 @@
|
|||
import matplotlib.pyplot as plt
|
||||
import functions as aux
|
||||
|
||||
eff_df = aux.load_pickle("efficiency_data.pkl")
|
||||
|
||||
bayes_cifar_entropy = aux.load_pickle("bayes_data_cifar_ne.pkl")
|
||||
bayes_mnist_entropy = aux.load_pickle("bayes_data_mnist_ne.pkl")
|
||||
|
||||
bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho',
|
||||
'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho',
|
||||
'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho',
|
||||
'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho',
|
||||
'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho']
|
||||
|
||||
lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias',
|
||||
'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight',
|
||||
'fc3.bias']
|
||||
|
||||
"""
|
||||
for size in range(1, 8):
|
||||
if size != 3:
|
||||
plt.plot(eff_df['CIFAR']['BCNN'][size], label='Size {}'.format(size))
|
||||
|
||||
plt.legend(loc='upper right')
|
||||
plt.show()
|
||||
"""
|
||||
temp = []
|
||||
for epoch in range(0, 100):
|
||||
temp.append(bayes_cifar_entropy[1][epoch]['conv2.W_mu'])
|
||||
|
||||
plt.plot(temp)
|
||||
plt.show()
|
|
@ -0,0 +1,68 @@
|
|||
import functions as aux
|
||||
|
||||
models_bayes_cifar = aux.load_pickle("bayes_data_cifar.pkl")
|
||||
models_bayes_mnist = aux.load_pickle("bayes_data_mnist.pkl")
|
||||
models_lenet_cifar = aux.load_pickle("lenet_data_cifar.pkl")
|
||||
models_lenet_mnist = aux.load_pickle("lenet_data_mnist.pkl")
|
||||
|
||||
bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho',
|
||||
'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho',
|
||||
'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho',
|
||||
'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho',
|
||||
'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho']
|
||||
|
||||
lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias',
|
||||
'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight',
|
||||
'fc3.bias']
|
||||
|
||||
for model_size in range(1, 8):
|
||||
for epoch in range(0, 100):
|
||||
for k in bayes_keys:
|
||||
models_bayes_cifar[model_size][epoch][k] = \
|
||||
aux.neumann_entropy(
|
||||
aux.square_matrix(
|
||||
models_bayes_cifar[model_size][epoch][k]
|
||||
)
|
||||
)
|
||||
|
||||
aux.save_pickle("bayes_data_cifar_ne.pkl", models_bayes_cifar)
|
||||
del models_bayes_cifar
|
||||
|
||||
for model_size in range(1, 8):
|
||||
for epoch in range(0, 100):
|
||||
for k in bayes_keys:
|
||||
models_bayes_mnist[model_size][epoch][k] = \
|
||||
aux.neumann_entropy(
|
||||
aux.square_matrix(
|
||||
models_bayes_mnist[model_size][epoch][k]
|
||||
)
|
||||
)
|
||||
|
||||
aux.save_pickle("bayes_data_mnist_ne.pkl", models_bayes_mnist)
|
||||
del models_bayes_mnist
|
||||
|
||||
for model_size in range(1, 8):
|
||||
for epoch in range(0, 100):
|
||||
for k in lenet_keys:
|
||||
models_lenet_cifar[model_size][epoch][k] = \
|
||||
aux.neumann_entropy(
|
||||
aux.square_matrix(
|
||||
models_lenet_cifar[model_size][epoch][k]
|
||||
)
|
||||
)
|
||||
|
||||
aux.save_pickle("lenet_data_cifar_ne.pkl", models_lenet_cifar)
|
||||
del models_lenet_cifar
|
||||
|
||||
for model_size in range(1, 8):
|
||||
for epoch in range(0, 100):
|
||||
for k in lenet_keys:
|
||||
models_lenet_mnist[model_size][epoch][k] = \
|
||||
aux.neumann_entropy(
|
||||
aux.square_matrix(
|
||||
models_lenet_mnist[model_size][epoch][k]
|
||||
)
|
||||
)
|
||||
|
||||
aux.save_pickle("lenet_data_mnist_ne.pkl", models_lenet_mnist)
|
||||
del models_lenet_mnist
|
Loading…
Reference in New Issue