import matplotlib.pyplot as plt import functions as aux eff_df = aux.load_pickle("efficiency_data.pkl") # bayes_cifar_entropy = aux.load_pickle("bayes_data_cifar_ne.pkl") # lenet_mnist_entropy = aux.load_pickle("lenet_data_mnist_ne.pkl") entropy_data = aux.load_pickle("entropy_data.pkl") bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho', 'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho', 'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho', 'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho', 'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho'] lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias', 'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight', 'fc3.bias'] for size in range(1, 8): # if size != 3: plt.plot(eff_df['MNIST']['LeNet'][size], label='Efficiency size {}'.format(size)) plt.plot(entropy_data['MNIST']['LeNet'][size], label='Entropy size {}'.format(size)) plt.legend(loc='upper right') # plt.legend(loc='lower right') plt.show()