import matplotlib.pyplot as plt import functions as aux model_type = 'BCNN' # BCNN or LeNet dataset = 'MNIST' # MNIST or CIFAR eff_df = aux.load_pickle("efficiency_data.pkl") entropy_data_noise = aux.load_pickle("entropy_data_noisy.pkl") entropy_data = aux.load_pickle("entropy_data.pkl") bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho', 'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho', 'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho', 'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho', 'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho'] lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias', 'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight', 'fc3.bias'] all_noises = [0.1, 0.25, 0.5, 0.75, 0.99, 'raleigh', 'erlang', 'exponential', 'uniform', 'impulse'] for size in range(1, 2): #plt.plot(eff_df[dataset][model_type][size], # label='Efficiency') plt.plot(entropy_data[dataset][model_type][size], label='Entropy at noise 0.0') for noise in all_noises: plt.plot(entropy_data_noise[dataset][model_type][noise], label='Entropy at noise {}'.format(noise)) plt.legend(loc='upper right') # plt.legend(loc='lower right') plt.show()