170 lines
5.4 KiB
Python
170 lines
5.4 KiB
Python
import functions as aux
|
|
import statistics as st
|
|
|
|
alpha = 10000
|
|
max_epoch = 30
|
|
max_size = 8
|
|
|
|
models_bayes_cifar = aux.load_pickle("bayes_data_cifar.pkl")
|
|
models_bayes_mnist = aux.load_pickle("bayes_data_mnist.pkl")
|
|
models_lenet_cifar = aux.load_pickle("lenet_data_cifar.pkl")
|
|
models_lenet_mnist = aux.load_pickle("lenet_data_mnist.pkl")
|
|
|
|
entropy_data = {'CIFAR':
|
|
{'BCNN':
|
|
{1: None, 2: None, 3: None, 4: None,
|
|
5: None, 6: None, 7: None},
|
|
'LeNet':
|
|
{1: None, 2: None, 3: None, 4: None,
|
|
5: None, 6: None, 7: None}
|
|
},
|
|
'MNIST':
|
|
{'BCNN':
|
|
{1: None, 2: None, 3: None, 4: None,
|
|
5: None, 6: None, 7: None},
|
|
'LeNet':
|
|
{1: None, 2: None, 3: None, 4: None,
|
|
5: None, 6: None, 7: None}
|
|
},
|
|
}
|
|
|
|
"""
|
|
bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho',
|
|
'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho',
|
|
'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho',
|
|
'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho',
|
|
'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho']
|
|
|
|
lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias',
|
|
'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight',
|
|
'fc3.bias']
|
|
|
|
bayes_keys = ['conv1.W_mu', 'conv1.W_rho',
|
|
'conv2.W_mu', 'conv2.W_rho',
|
|
'fc1.W_mu', 'fc1.W_rho',
|
|
'fc2.W_mu', 'fc2.W_rho',
|
|
'fc3.W_mu', 'fc3.W_rho']
|
|
|
|
"""
|
|
|
|
bayes_keys = ['conv1.W_mu',
|
|
'conv2.W_mu',
|
|
'fc1.W_mu',
|
|
'fc2.W_mu',
|
|
'fc3.W_mu',]
|
|
|
|
|
|
lenet_keys = ['conv1.weight', 'conv2.weight',
|
|
'fc1.weight', 'fc2.weight', 'fc3.weight']
|
|
|
|
for model_size in range(1, max_size):
|
|
for epoch in range(0, max_epoch):
|
|
for k in bayes_keys:
|
|
models_bayes_cifar[model_size][epoch][k] = \
|
|
aux.neumann_entropy(
|
|
aux.square_matrix(
|
|
models_bayes_cifar[model_size][epoch][k]
|
|
)
|
|
)
|
|
|
|
for size in range(1, max_size):
|
|
temp_epoch = []
|
|
for epoch in range(0, max_epoch):
|
|
temp_mean = []
|
|
for layer in bayes_keys:
|
|
temp_mean.append(
|
|
models_bayes_cifar[size][epoch][layer].item()
|
|
)
|
|
temp_mean = st.mean(temp_mean)
|
|
temp_epoch.append(
|
|
temp_mean
|
|
)
|
|
entropy_data['CIFAR']['BCNN'][size] = [x / alpha for x in temp_epoch]# temp_epoch
|
|
|
|
# aux.save_pickle("bayes_data_cifar_ne.pkl", models_bayes_cifar)
|
|
del models_bayes_cifar
|
|
|
|
for model_size in range(1, max_size):
|
|
for epoch in range(0, max_epoch):
|
|
for k in bayes_keys:
|
|
models_bayes_mnist[model_size][epoch][k] = \
|
|
aux.neumann_entropy(
|
|
aux.square_matrix(
|
|
models_bayes_mnist[model_size][epoch][k]
|
|
)
|
|
)
|
|
|
|
for size in range(1, max_size):
|
|
temp_epoch = []
|
|
for epoch in range(0, max_epoch):
|
|
temp_mean = []
|
|
for layer in bayes_keys:
|
|
temp_mean.append(
|
|
models_bayes_mnist[size][epoch][layer].item()
|
|
)
|
|
temp_mean = st.mean(temp_mean)
|
|
temp_epoch.append(
|
|
temp_mean
|
|
)
|
|
entropy_data['MNIST']['BCNN'][size] = [x / alpha for x in temp_epoch]# temp_epoch
|
|
|
|
# aux.save_pickle("bayes_data_mnist_ne.pkl", models_bayes_mnist)
|
|
del models_bayes_mnist
|
|
|
|
for model_size in range(1, max_size):
|
|
for epoch in range(0, max_epoch):
|
|
for k in lenet_keys:
|
|
models_lenet_cifar[model_size][epoch][k] = \
|
|
aux.neumann_entropy(
|
|
aux.square_matrix(
|
|
models_lenet_cifar[model_size][epoch][k]
|
|
)
|
|
)
|
|
|
|
for size in range(1, max_size):
|
|
temp_epoch = []
|
|
for epoch in range(0, max_epoch):
|
|
temp_mean = []
|
|
for layer in lenet_keys:
|
|
temp_mean.append(
|
|
models_lenet_cifar[size][epoch][layer].item()
|
|
)
|
|
temp_mean = st.mean(temp_mean)
|
|
temp_epoch.append(
|
|
temp_mean
|
|
)
|
|
entropy_data['CIFAR']['LeNet'][size] = [x / alpha for x in temp_epoch]# temp_epoch
|
|
|
|
# aux.save_pickle("lenet_data_cifar_ne.pkl", models_lenet_cifar)
|
|
del models_lenet_cifar
|
|
|
|
for model_size in range(1, max_size):
|
|
for epoch in range(0, max_epoch):
|
|
for k in lenet_keys:
|
|
models_lenet_mnist[model_size][epoch][k] = \
|
|
aux.neumann_entropy(
|
|
aux.square_matrix(
|
|
models_lenet_mnist[model_size][epoch][k]
|
|
)
|
|
)
|
|
|
|
for size in range(1, max_size):
|
|
temp_epoch = []
|
|
for epoch in range(0, max_epoch):
|
|
temp_mean = []
|
|
for layer in lenet_keys:
|
|
temp_mean.append(
|
|
models_lenet_mnist[size][epoch][layer].item()
|
|
)
|
|
temp_mean = st.mean(temp_mean)
|
|
temp_epoch.append(
|
|
temp_mean
|
|
)
|
|
entropy_data['MNIST']['LeNet'][size] = [x / alpha for x in temp_epoch]# temp_epoch
|
|
|
|
|
|
# aux.save_pickle("lenet_data_mnist_ne.pkl", models_lenet_mnist)
|
|
del models_lenet_mnist
|
|
|
|
aux.save_pickle("entropy_data.pkl", entropy_data)
|