Experiments-Data-Processing/energy_data.py

117 lines
2.4 KiB
Python

from glob import glob
import numpy as np
from aux_functions import load_pickle, save_pickle
EXP_NO = 2
MODEL_SIZE = 1
CRITERIA = ""
data_type = {"cifar": "CIFAR", "mnist": "MNIST"}
experiment_criterias = {
"Early": "/Early_Stopping",
"Efficiency": "/Efficiency_Stopping",
"100": "/100_epoch",
"Accuracy": "/Accuracy_Bound",
"Energy": "/Energy_Bound",
}
model_type = {"bayes": "bayes_exp_*.pkl", "freq": "freq_exp_data_*.pkl"}
EXPERIMENT_PATH = f"./EXPERIMENT_{EXP_NO}_DATA"
models_exp = {
"cifar": {
"bayes": {
1: None,
2: None,
3: None,
4: None,
5: None,
6: None,
7: None,
},
"freq": {
1: None,
2: None,
3: None,
4: None,
5: None,
6: None,
7: None,
},
},
"mnist": {
"bayes": {
1: None,
2: None,
3: None,
4: None,
5: None,
6: None,
7: None,
},
"freq": {
1: None,
2: None,
3: None,
4: None,
5: None,
6: None,
7: None,
},
},
}
path = (
f"{EXPERIMENT_PATH}"
f"{experiment_criterias['Efficiency']}"
f"/{data_type['cifar']}"
f"/{model_type['bayes']}"
)
path = glob(path)
for t in zip(range(1, 8), path):
models_exp["cifar"]["bayes"][t[0]] = np.concatenate(load_pickle(t[1]), axis=0)
path = (
f"{EXPERIMENT_PATH}"
f"{experiment_criterias['Efficiency']}"
f"/{data_type['mnist']}"
f"/{model_type['bayes']}"
)
path = glob(path)
for t in zip(range(1, 8), path):
models_exp["mnist"]["bayes"][t[0]] = np.concatenate(load_pickle(t[1]), axis=0)
path = (
f"{EXPERIMENT_PATH}"
f"{experiment_criterias['Efficiency']}"
f"/{data_type['cifar']}"
f"/{model_type['freq']}"
)
path = glob(path)
for t in zip(range(1, 8), path):
models_exp["cifar"]["freq"][t[0]] = np.concatenate(load_pickle(t[1]), axis=0)
path = (
f"{EXPERIMENT_PATH}"
f"{experiment_criterias['Efficiency']}"
f"/{data_type['mnist']}"
f"/{model_type['freq']}"
)
path = glob(path)
for t in zip(range(1, 8), path):
models_exp["mnist"]["freq"][t[0]] = np.concatenate(load_pickle(t[1]), axis=0)
# print(models_exp)
file_name = f"Experiment_{EXP_NO}_accuracy_data.pkl"
save_pickle(file_name, models_exp)