Flux.jl/src/tracker/Tracker.jl

126 lines
3.1 KiB
Julia
Raw Normal View History

2017-08-19 10:06:19 +00:00
module Tracker
2018-07-06 10:28:18 +00:00
using MacroTools
2018-07-09 15:57:44 +00:00
using MacroTools: @q, @forward
2018-07-06 10:28:18 +00:00
2018-03-05 23:44:25 +00:00
import Base: ==
2018-07-11 14:31:22 +00:00
export TrackedArray, TrackedVector, TrackedMatrix, Params, param, back!
2017-08-19 15:20:53 +00:00
tracker(x) = nothing
istracked(x) = tracker(x) nothing
isleaf(x) = !istracked(x) || isleaf(tracker(x))
grad(x) = grad(tracker(x))
2018-06-26 13:57:43 +00:00
grad(::Void) = nothing
2018-07-09 18:44:14 +00:00
data(x) = x
2017-08-19 09:14:50 +00:00
2017-08-18 15:50:27 +00:00
struct Call{F,As<:Tuple}
func::F
args::As
end
2018-07-30 19:08:44 +00:00
Call(f::F, args::T) where {F,T} = Call{F,T}(f, args)
2018-07-06 10:28:18 +00:00
Call() = Call(nothing, ())
2017-08-18 15:50:27 +00:00
2018-03-05 23:44:25 +00:00
# When deserialising, the object_id changes
a::Call == b::Call = a.func == b.func && a.args == b.args
2018-02-28 13:47:14 +00:00
@inline (c::Call)() = c.func(data.(c.args)...)
2017-08-19 09:14:50 +00:00
mutable struct Tracked{T}
2017-10-18 21:54:58 +00:00
ref::UInt32
2017-08-18 15:50:27 +00:00
f::Call
2018-02-12 12:31:15 +00:00
isleaf::Bool
grad::T
2018-07-09 18:44:14 +00:00
Tracked{T}(f::Call) where T = new(0, f, false)
Tracked{T}(f::Call, grad::T) where T = new(0, f, false, grad)
Tracked{T}(f::Call{Void}, grad::T) where T = new(0, f, true, grad)
2017-08-19 09:14:50 +00:00
end
2017-08-19 10:00:55 +00:00
istracked(x::Tracked) = true
2018-07-06 10:28:18 +00:00
isleaf(x::Tracked) = x.f == Call()
grad(x::Tracked) = x.grad
2017-10-26 10:15:14 +00:00
2018-07-09 18:44:14 +00:00
track(f::Call, x) = Tracked{typeof(x)}(f)
2018-07-06 10:28:18 +00:00
function _forward end
2018-07-30 19:08:44 +00:00
function track(f::F, xs...) where F
y, back = _forward(f, xs...)
ts = map(tracker, xs)
c = Call(back, ts)
track(c, y)
end
function track_kw(f::F, xs...; kw...) where F
2018-07-10 08:03:09 +00:00
y, back = _forward(f, xs...; kw...)
2018-07-09 18:44:14 +00:00
track(Call(back, tracker.(xs)), y)
2018-07-06 10:28:18 +00:00
end
macro grad(ex)
@capture(shortdef(ex), (name_(args__) = body_) |
(name_(args__) where {T__} = body_)) || error("Need a function definition")
T == nothing && (T = [])
2018-07-10 17:16:37 +00:00
isexpr(name, :(::)) || (name = :(::typeof($name)))
insert!(args, 1+isexpr(args[1], :parameters) , name)
2018-07-09 12:39:10 +00:00
@q(Tracker._forward($(args...)) where $(T...) = $body) |> esc
2018-07-06 10:28:18 +00:00
end
2018-06-29 12:53:50 +00:00
function update!(x, Δ)
2018-07-11 14:31:22 +00:00
x.data .+= data(Δ)
2018-06-29 12:53:50 +00:00
tracker(x).grad .= 0
return x
end
2018-07-09 15:57:44 +00:00
include("idset.jl")
2017-09-07 01:21:35 +00:00
include("back.jl")
2018-02-07 20:39:36 +00:00
include("scalar.jl")
include("array.jl")
2017-08-23 00:43:45 +00:00
include("numeric.jl")
2017-08-19 15:02:19 +00:00
2018-07-02 12:17:46 +00:00
"""
hook(f, x) -> x
Hook into gradient backpropagation. `x` is unmodified, but when backpropagating
`f` will be applied to the incoming gradient. For example, `hook(-, x)` will reverse
the sign of the gradient applied to `x`.
"""
hook(f, x) = istracked(x) ? track(hook, f, x) : x
2018-07-09 12:39:10 +00:00
@grad hook(f, x) = x, Δ -> (nothing, f(Δ))
2018-07-02 12:17:46 +00:00
2018-07-09 16:52:34 +00:00
"""
checkpoint(f, args...)
Behaves like `f(args...)`, but avoids storing the intermediate values needed for
calculating gradients. Instead, `f(args...)` will be called again during the
backward pass. This can be used to save memory in larger models.
"""
checkpoint(f, args...) = track(checkpoint, f, args...)
@grad function checkpoint(f, args...)
data(f(args...)), function (Δ)
y, back = forward(f, args...)
(nothing, back(Δ)...)
end
end
2018-07-10 08:03:09 +00:00
nobacksies(f, x) = track(nobacksies, f, x)
nobacksies(f, xs::Tuple) = map(x -> nobacksies(f, x), xs)
@grad nobacksies(f, x) = data(x), Δ -> error("Nested AD not defined for $f")
2018-02-08 17:18:40 +00:00
param(x::Number) = TrackedReal(float(x))
2018-02-07 20:39:36 +00:00
param(xs::AbstractArray) = TrackedArray(float.(xs))
2018-07-10 08:03:09 +00:00
@grad identity(x) = data(x), Δ -> (Δ,)
param(x::TrackedReal) = track(identity, x)
param(x::TrackedArray) = track(identity, x)
2018-03-01 16:31:20 +00:00
import NNlib.cudata
2018-01-08 16:31:23 +00:00
import Adapt.adapt
2017-08-24 16:00:48 +00:00
2018-03-01 16:31:20 +00:00
cudata(x::TrackedArray) = data(x)
2018-02-07 22:52:46 +00:00
adapt(T, xs::TrackedArray) = param(adapt(T, data(xs)))
2017-08-24 16:00:48 +00:00
2017-08-19 10:06:19 +00:00
end