Flux.jl/src/cuda/cudnn.jl

78 lines
2.7 KiB
Julia
Raw Normal View History

2018-01-26 12:16:34 +00:00
using CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, libcudnn_handle,
cudnnDataType, TensorDesc
2018-01-24 18:45:24 +00:00
mutable struct DropoutDesc
ptr::Ptr{Void}
states::CuVector{UInt8}
end
Base.unsafe_convert(::Type{Ptr{Void}}, dd::DropoutDesc) = dd.ptr
function DropoutDesc(ρ::Real; seed::Integer=0)
d = [C_NULL]
s = Csize_t[0]
@check ccall((:cudnnCreateDropoutDescriptor,libcudnn), cudnnStatus_t, (Ptr{Ptr{Void}},), d)
@check ccall((:cudnnDropoutGetStatesSize,libcudnn),cudnnStatus_t,(Ptr{Void},Ptr{Csize_t}),libcudnn_handle[],s)
states = CuArray{UInt8}(s[]) # TODO: can we drop this when ρ=0?
desc = DropoutDesc(d[], states)
@check ccall((:cudnnSetDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},Ptr{Void},Cfloat,Ptr{Void},Csize_t,Culonglong),
desc,libcudnn_handle[],ρ,states,length(states),seed)
finalizer(desc, x ->
@check ccall((:cudnnDestroyDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},),x))
return desc
end
const RNN_RELU = 0 # Stock RNN with ReLu activation
const RNN_TANH = 1 # Stock RNN with tanh activation
const LSTM = 2 # LSTM with no peephole connections
const GRU = 3 # Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1)
const LINEAR_INPUT = 0
const SKIP_INPUT = 1
const UNIDIRECTIONAL = 0
const BIDIRECTIONAL = 1
const RNN_ALGO_STANDARD = 0
const RNN_ALGO_PERSIST_STATIC = 1
const RNN_ALGO_PERSIST_DYNAMIC = 2
mutable struct RNNDesc
2018-01-26 15:28:39 +00:00
T::Type
input::Int
hidden::Int
2018-01-24 18:45:24 +00:00
ptr::Ptr{Void}
end
Base.unsafe_convert(::Type{Ptr{Void}}, d::RNNDesc) = d.ptr
2018-01-26 15:28:39 +00:00
function RNNDesc(T::Type, mode::Int, input::Int, hidden::Int; layers = 1)
2018-01-24 18:45:24 +00:00
d = [C_NULL]
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Void}},),d)
2018-01-26 15:28:39 +00:00
rd = RNNDesc(T, input, hidden, d[])
2018-01-24 18:45:24 +00:00
finalizer(rd, x ->
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Void},),x))
2018-01-26 12:16:34 +00:00
dropoutDesc = DropoutDesc(0)
2018-01-24 18:45:24 +00:00
inputMode = LINEAR_INPUT
direction = UNIDIRECTIONAL
algo = RNN_ALGO_STANDARD
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Cint,Ptr{Void},Cint,Cint,Cint,Cint,Cint),
2018-01-26 15:28:39 +00:00
libcudnn_handle[],rd,hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(rd.T))
2018-01-24 18:45:24 +00:00
return rd
end
2018-01-26 12:16:34 +00:00
2018-01-26 15:28:39 +00:00
function rnnWorkspaceSize(r::RNNDesc)
size = Csize_t[0]
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Cint,Ptr{Ptr{Void}},Ptr{Csize_t}),
libcudnn_handle[], r, 1, [TensorDesc(r.T, (1,r.input,1))], size)
return Int(size[])
end
function rnnParamSize(r::RNNDesc)
2018-01-26 12:16:34 +00:00
size = Csize_t[0]
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Void},Ptr{Void},Ptr{Void},Ptr{Csize_t},Cint),
2018-01-26 15:28:39 +00:00
libcudnn_handle[], r, TensorDesc(r.T, (1,r.input,1)), size, cudnnDataType(r.T))
2018-01-26 12:16:34 +00:00
return Int(size[])
end