</script><linkhref="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono"rel="stylesheet"type="text/css"/><linkhref="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/fontawesome.min.css"rel="stylesheet"type="text/css"/><linkhref="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/solid.min.css"rel="stylesheet"type="text/css"/><linkhref="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/brands.min.css"rel="stylesheet"type="text/css"/><linkhref="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css"rel="stylesheet"type="text/css"/><script>documenterBaseURL="../.."</script><scriptsrc="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"data-main="../../assets/documenter.js"></script><scriptsrc="../../siteinfo.js"></script><scriptsrc="../../../versions.js"></script><linkhref="../../assets/flux.css"rel="stylesheet"type="text/css"/><linkclass="docs-theme-link"rel="stylesheet"type="text/css"href="../../assets/themes/documenter-dark.css"data-theme-name="documenter-dark"/><linkclass="docs-theme-link"rel="stylesheet"type="text/css"href="../../assets/themes/documenter-light.css"data-theme-name="documenter-light"data-theme-primary/><scriptsrc="../../assets/themeswap.js"></script></head><body><divid="documenter"><navclass="docs-sidebar"><divclass="docs-package-name"><spanclass="docs-autofit">Flux</span></div><formclass="docs-search"action="../../search/"><inputclass="docs-search-query"id="documenter-search-query"name="q"type="text"placeholder="Search docs"/></form><ulclass="docs-menu"><li><aclass="tocitem"href="../../">Home</a></li><li><spanclass="tocitem">Building Models</span><ul><li><aclass="tocitem"href="../basics/">Basics</a></li><li><aclass="tocitem"href="../recurrence/">Recurrence</a></li><li><aclass="tocitem"href="../layers/">Model Reference</a></li><liclass="is-active"><aclass="tocitem"href>Loss Functions</a><ulclass="internal"><li><aclass="tocitem"href="#Loss-Functions-1"><span>Loss Functions</span></a></li></ul></li><li><aclass="tocitem"href="../regularisation/">Regularisation</a></li><li><aclass="tocitem"href="../advanced/">Advanced Model Building</a></li><li><aclass="tocitem"href="../nnlib/">NNlib</a></li></ul></li><li><spanclass="tocitem">Handling Data</span><ul><li><aclass="tocitem"href="../../data/onehot/">One-Hot Encoding</a></li><li><aclass="tocitem"href="../../data/dataloader/">DataLoader</a></li></ul></li><li><spanclass="tocitem">Training Models</span><ul><li><aclass="tocitem"href="../../training/optimisers/">Optimisers</a></li><li><aclass="tocitem"href="../../training/training/">Training</a></li></ul></li><li><aclass="tocitem"href="../../gpu/">GPU Support</a></li><li><aclass="tocitem"href="../../saving/">Saving & Loading</a></li><li><aclass="tocitem"href="../../ecosystem/">The Julia Ecosystem</a></li><li><aclass="tocitem"href="../../utilities/">Utility Functions</a></li><li><aclass="tocitem"href="../../performance/">Performance Tips</a></li><li><aclass="tocitem"href="../../datasets/">Datasets</a></li><li><aclass="tocitem"href="../../community/">Community</a></li></ul><divclass="docs-version-selector field has-addons"><divclass="control"><spanclass="docs-label button is-static is-size-7">Version</span></div><divclass="docs-selector control is-expanded"><divclass="select is-fullwidth is-size-7"><selectid="documenter-version-selector"></select></div></div></div></nav><divclass="docs-main"><headerclass="docs-navbar"><navclass="breadcrumb"><ulclass="is-hidden-mobile"><li><aclass="is-disabled">Building Models</a></li><liclass="is-active"><ahref>Loss Functions</a></li></ul><ulclass="is-hidden-tablet"><liclass="is-active"><ahref>Loss Functions</a></li></ul></nav><divclass="docs-right"><aclass="docs-edit-link"href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/models/losses.md"title="Edit on GitHub"><spanclass="docs-icon fab"></span><spanclass="docs-label is-hidden-touch">Edit on GitHub</span></a><aclass="docs-settings-b
loss(ŷ, y, agg=sum) # use `sum` for reduction
loss(ŷ, y, agg=x->sum(x, dims=2)) # partial reduction
loss(ŷ, y, agg=x->mean(w .* x)) # weighted mean
loss(ŷ, y, agg=identity) # no aggregation. </code></pre><h3id="Losses-Reference-1"><aclass="docs-heading-anchor"href="#Losses-Reference-1">Losses Reference</a><aclass="docs-heading-anchor-permalink"href="#Losses-Reference-1"title="Permalink"></a></h3><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.mae"href="#Flux.mae"><code>Flux.mae</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">mae(ŷ, y; agg=mean)</code></pre><p>Return the loss corresponding to mean absolute error: </p><pre><codeclass="language-none">agg(abs.(ŷ .- y))</code></pre></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L1-L7">source</a></section></article><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.mse"href="#Flux.mse"><code>Flux.mse</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">mse(ŷ, y; agg=mean)</code></pre><p>Return the loss corresponding to mean square error: </p><pre><codeclass="language-none">agg((ŷ .- y).^2)</code></pre></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L10-L16">source</a></section></article><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.msle"href="#Flux.msle"><code>Flux.msle</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">msle(ŷ, y; agg=mean, ϵ=eps(eltype(ŷ)))</code></pre><p>The loss corresponding to mean squared logarithmic errors, calculated as</p><pre><codeclass="language-none">agg((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2)</code></pre><p>The <code>ϵ</code> term provides numerical stability. Penalizes an under-predicted estimate more than an over-predicted estimate.</p></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L19-L28">source</a></section></article><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.huber_loss"href="#Flux.huber_loss"><code>Flux.huber_loss</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">huber_loss(ŷ, y; δ=1, agg=mean)</code></pre><p>Return the mean of the <ahref="https://en.wikipedia.org/wiki/Huber_loss">Huber loss</a> given the prediction <code>ŷ</code> and true values <code>y</code>.</p><pre><codeclass="language-none"> | 0.5 * |ŷ - y|, for |ŷ - y| <= δ
logits=false, agg=mean)</code></pre><p>Return the cross entropy between the given probability distributions; calculated as</p><pre><codeclass="language-none">agg(.-sum(weight .* y .* log.(ŷ .+ ϵ); dims=dims))agg=mean,</code></pre><p><code>weight</code> can be <code>nothing</code>, a number or an array. <code>weight=nothing</code> acts like <code>weight=1</code> but is faster.</p><p>If <code>logits=true</code>, the input <code>̂y</code> is first fed to a <ahref="../nnlib/#NNlib.softmax"><code>softmax</code></a> layer.</p><p>See also: <ahref="#Flux.logitcrossentropy"><code>Flux.logitcrossentropy</code></a>, <ahref="#Flux.binarycrossentropy"><code>Flux.binarycrossentropy</code></a>, <ahref="#Flux.logitbinarycrossentropy"><code>Flux.logitbinarycrossentropy</code></a></p></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L52-L67">source</a></section></article><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.logitcrossentropy"href="#Flux.logitcrossentropy"><code>Flux.logitcrossentropy</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">logitcrossentropy(ŷ, y; weight=nothing, agg=mean, dims=1)</code></pre><p>Return the cross[1.0 0.5 0.3 2.4]entropy computed after a <ahref="../nnlib/#NNlib.logsoftmax"><code>Flux.logsoftmax</code></a> operation; calculated as</p><pre><codeclass="language-none">agg(.-sum(weight .* y .* logsoftmax(ŷ; dims=dims); dims=dims))</code></pre><p><code>logitcrossentropy(ŷ, y)</code> is mathematically equivalent to <ahref="#Flux.crossentropy"><code>Flux.crossentropy(softmax(log.(ŷ)), y)</code></a> but it is more numerically stable.</p><p>See also: <ahref="#Flux.crossentropy"><code>Flux.crossentropy</code></a>, <ahref="#Flux.binarycrossentropy"><code>Flux.binarycrossentropy</code></a>, <ahref="#Flux.logitbinarycrossentropy"><code>Flux.logitbinarycrossentropy</code></a></p></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L76-L88">source</a></section></article><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.binarycrossentropy"href="#Flux.binarycrossentropy"><code>Flux.binarycrossentropy</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">binarycrossentropy(ŷ, y; agg=mean, ϵ=epseltype(ŷ), logits=false)</code></pre><p>Return <span>$-y*\log(ŷ + ϵ) - (1-y)*\log(1-ŷ + ϵ)$</span>. The <code>ϵ</code> term provides numerical stability.</p><p>Typically, the prediction <code>ŷ</code> is given by the output of a <ahref="../nnlib/#NNlib.sigmoid"><code>sigmoid</code></a> activation. If <code>logits=true</code>, the input <code>̂y</code> is first fed to a <ahref="../nnlib/#NNlib.sigmoid"><code>sigmoid</code></a> activation. See also: <ahref="#Flux.crossentropy"><code>Flux.crossentropy</code></a>, <ahref="#Flux.logitcrossentropy"><code>Flux.logitcrossentropy</code></a>, <ahref="#Flux.logitbinarycrossentropy"><code>Flux.logitbinarycrossentropy</code></a></p></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L93-L101">source</a></section></article><articleclass="docstring"><header><aclass="docstring-binding"id="Flux.logitbinarycrossentropy"href="#Flux.logitbinarycrossentropy"><code>Flux.logitbinarycrossentropy</code></a> — <spanclass="docstring-category">Function</span></header><section><div><pre><codeclass="language-julia">logitbinarycrossentropy(ŷ, y; agg=mean)</code></pre><p><code>logitbinarycrossentropy(ŷ, y)</code> is mathematically equivalent to <ahref="#Flux.binarycrossentropy"><code>Flux.binarycrossentropy(σ(log(ŷ)), y)</code></a> but it is more numerically stable.</p><p>See also: <ahref="#Flux.crossentropy"><code>Flux.crossentropy</code></
den = sum(@.(ŷ*y + α*ŷ*(1-y) + β*(1-ŷ)*y)), dims=dims)
tversky_loss = 1 - num/den</code></pre><p>and then aggregated with <code>agg</code> over the batch.</p><p>When <code>α+β=1</code>, it is equal to <code>1-F_β</code>, where <code>F_β</code> is an F-score.</p></div><aclass="docs-sourcelink"target="_blank"href="https://github.com/FluxML/Flux.jl/blob/33ab22a592e3cd914a5854f057d922c3ba0db5db/src/layers/stateless.jl#L197-L214">source</a></section></article></article><navclass="docs-footer"><aclass="docs-footer-prevpage"href="../layers/">« Model Reference</a><aclass="docs-footer-nextpage"href="../regularisation/">Regularisation »</a></nav></div><divclass="modal"id="documenter-settings"><divclass="modal-background"></div><divclass="modal-card"><headerclass="modal-card-head"><pclass="modal-card-title">Settings</p><buttonclass="delete"></button></header><sectionclass="modal-card-body"><p><labelclass="label">Theme</label><divclass="select"><selectid="documenter-themepicker"><optionvalue="documenter-light">documenter-light</option><optionvalue="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <ahref="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <spanclass="colophon-date"title="Thursday 30 April 2020 10:48">Thursday 30 April 2020</span>. Using Julia version 1.4.1.</p></section><footerclass="modal-card-foot"></footer></div></div></div></body></html>