2017-05-01 11:41:54 +00:00
|
|
|
tobatch(xs::Batch) = rawbatch(xs)
|
|
|
|
tobatch(xs) = tobatch(batchone(xs))
|
|
|
|
|
|
|
|
function accuracy(m, data)
|
2017-05-01 12:40:11 +00:00
|
|
|
n = 0
|
2017-05-01 11:41:54 +00:00
|
|
|
correct = 0
|
|
|
|
for (x, y) in data
|
|
|
|
x, y = tobatch.((x, y))
|
2017-05-01 12:40:11 +00:00
|
|
|
n += size(x, 1)
|
2017-05-01 11:41:54 +00:00
|
|
|
correct += sum(onecold(m(x)) .== onecold(y))
|
|
|
|
end
|
2017-05-01 12:40:11 +00:00
|
|
|
return correct/n
|
2017-05-01 11:41:54 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
function train!(m, train, test = [];
|
|
|
|
epoch = 1, η = 0.1, loss = mse)
|
|
|
|
i = 0
|
2017-05-01 11:46:02 +00:00
|
|
|
@progress for e in 1:epoch
|
2017-05-01 11:41:54 +00:00
|
|
|
info("Epoch $e")
|
|
|
|
@progress for (x, y) in train
|
|
|
|
x, y = tobatch.((x, y))
|
|
|
|
i += 1
|
|
|
|
ŷ = m(x)
|
|
|
|
any(isnan, ŷ) && error("NaN")
|
|
|
|
Δ = back!(loss, 1, ŷ, y)
|
|
|
|
back!(m, Δ, x)
|
|
|
|
update!(m, η)
|
|
|
|
i % 1000 == 0 && @show accuracy(m, test)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
return m
|
|
|
|
end
|