Flux.jl/src/model.jl

161 lines
3.6 KiB
Julia
Raw Normal View History

2016-08-23 15:32:19 +00:00
export Model, back!, update!, param
# Basic model API
2016-12-15 22:31:27 +00:00
"""
(m::Model)(X...) => Y
A "model" is a function with state. For example, a logistic regression is the
function
x -> σ(x * W + b)
where `W` and `b` are a trainable matrix and vector of weights repectively. The
`Model` abstract type is used loosely; in general the concept of a model is
closer to a protocol, and models don't need to inherit from this type. Normal
Julia functions are models with 0 parameters, for example.
"""
2017-03-14 16:51:31 +00:00
abstract type Model end
2016-08-23 15:32:19 +00:00
2016-12-15 22:31:27 +00:00
"""
back!(m::Model, ΔY, X...) => ΔX
Backpropagate the gradient `ΔY` through the model `m`, accumulating the
gradients of any parameters. Returns the gradient of the input `X`. Gradients
may be arrays or tuples of arrays (for multiple inputs/outputs).
"""
back!(m::Model, Δ, xs...) = error("Backprop not implemented for $(typeof(m))")
"""
update!(m::Model, η) => m
Update the parameters of the model `m` using the accumulated gradients from
`back!`, using the learning rate `η`.
"""
2016-08-24 14:41:30 +00:00
update!(m, η) = m
2016-08-23 15:32:19 +00:00
2016-12-15 22:31:27 +00:00
"""
graph(m::Model) => ::IVertex{Any} | nothing
Returns the graph representation of the model, if any. Most models are built
from lower-level components and can simply implement this method to get most of
Flux's functionality. If this method isn't available, functionality like
backpropagation or conversion for backend must be implemented on a case-by-case
basis. Alternatively, one can implement this method and override individual
methods as necessary.
"""
2016-08-31 01:37:53 +00:00
graph(m) = nothing
2017-03-21 01:32:12 +00:00
"""
`runmodel(m, ...)` is like `m(...)`, i.e. it runs the forward pass. However,
unlike direct calling, it does not try to apply batching and simply uses the
inputs directly.
This function should be considered an implementation detail; it will be
eventually be replaced by a non-hacky way of doing batching.
"""
function runmodel end
2016-08-23 15:32:19 +00:00
# Model parameters
2017-03-08 15:36:25 +00:00
# TODO: should be AbstractArray?
2016-12-15 22:31:27 +00:00
"""
A `Param` object stores a parameter array along with an accumulated delta to
that array. When converting to backends like TensorFlow, identical `Param`s will
result in identical variable objects, making model reuse trivial.
"""
2017-03-14 17:56:03 +00:00
struct Param{T}
2016-08-23 15:32:19 +00:00
x::T
Δx::T
end
2016-12-15 22:31:27 +00:00
"""
param(x::T) => ::Param{T}
Convenience method for creating a `Param` object for a given array.
"""
2016-08-23 15:32:19 +00:00
param(x) = Param(x, zero(x))
state(p::Param) = p.x
2016-12-15 22:31:27 +00:00
"""
accumulate!(p::Param, Δ) => p
Accumulates the update `Δ` on `p`. The value of `p` won't change until
`update!`.
"""
2016-08-23 15:32:19 +00:00
function accumulate!(p::Param, Δ)
2016-12-15 22:57:36 +00:00
p.Δx += Δ
2016-08-23 15:32:19 +00:00
return p
end
2016-12-15 22:31:27 +00:00
"""
update!(p::Param)
Apply the accumulated updates to the value of the parameter.
"""
2016-08-23 15:32:19 +00:00
function update!(p::Param, η)
2016-08-24 14:41:17 +00:00
p.x .-= p.Δx .* η
2016-08-23 22:56:31 +00:00
p.Δx[:] = 0
2016-08-23 15:32:19 +00:00
return p
end
state(x) = x
accumulate!(x, Δ) = x
2017-02-20 23:15:27 +00:00
Base.size(p::Param) = size(p.x)
Base.size(p::Param, n) = size(p.x, n)
2016-10-04 21:23:10 +00:00
2016-11-14 15:42:29 +00:00
function Base.show(io::IO, p::Param)
print(io, "Param", size(p.x))
end
2017-03-08 15:36:25 +00:00
Base.copy!(xs, p::Param) = copy!(xs, p.x)
Base.copy!(p::Param, xs) = copy!(p.x, xs)
2016-08-23 15:32:19 +00:00
# Anonymous models
export Capacitor
2017-03-14 17:56:03 +00:00
struct Capacitor <: Model
2016-08-23 15:32:19 +00:00
graph::IVertex{Any}
end
2017-03-20 19:57:00 +00:00
(m::Capacitor)(xs...) = interpmodel(m, xs...)
2016-08-23 15:32:19 +00:00
graph(cap::Capacitor) = cap.graph
2017-03-21 01:32:12 +00:00
# Recurrent Models
2017-03-29 16:47:43 +00:00
struct Stateful <: Model
2017-03-21 01:32:12 +00:00
model
state::Vector{Any}
end
function (m::Stateful)(x)
runrawbatched(x) do x
state, y = runmodel(m.model, (m.state...,), x)
2017-03-29 16:47:43 +00:00
m.state .= state
2017-03-21 01:32:12 +00:00
return y
end
end
2017-03-29 17:30:28 +00:00
stateless(m) = m
stateless(m::Stateful) = m.model
2017-03-21 01:32:12 +00:00
struct SeqModel
model
steps::Int
end
2017-03-28 18:54:32 +00:00
(m::SeqModel)(x::Tuple) = m.model(x)
splitseq(xs) = rebatch.(unstack(rawbatch(xs), 2))
joinseq(xs) = rebatchseq(stack(rawbatch.(xs), 2))
function (m::SeqModel)(x::Union{Seq,BatchSeq})
runbatched(x) do x
joinseq(m.model((splitseq(x)...,)))
end
end