Flux.jl/test/layers/stateless.jl

86 lines
2.5 KiB
Julia
Raw Normal View History

2018-07-18 13:39:20 +00:00
using Test
using Flux: onehotbatch, mse, crossentropy, logitcrossentropy,
σ, binarycrossentropy, logitbinarycrossentropy
const ϵ = 1e-7
@testset "losses" begin
# First, regression-style y's
y = [1, 1, 0, 0]
ŷ = [.9, .1, .1, .9]
@testset "mse" begin
@test mse(ŷ, y) (.1^2 + .9^2)/2
end
# Now onehot y's
y = onehotbatch([1, 1, 0, 0], 0:1)
ŷ = [.1 .9; .9 .1; .9 .1; .1 .9]'
v = log(.1 / .9)
logŷ = [v 0.0; 0.0 v; 0.0 v; v 0.0]'
lossvalue = 1.203972804325936
@testset "crossentropy" begin
@test crossentropy(ŷ, y) lossvalue
end
@testset "logitcrossentropy" begin
@test logitcrossentropy(logŷ, y) lossvalue
end
@testset "weighted_crossentropy" begin
@test crossentropy(ŷ, y, weight = ones(2)) lossvalue
@test crossentropy(ŷ, y, weight = [.5, .5]) lossvalue/2
@test crossentropy(ŷ, y, weight = [2, .5]) 1.5049660054074199
end
@testset "weighted_logitcrossentropy" begin
@test logitcrossentropy(logŷ, y, weight = ones(2)) lossvalue
@test logitcrossentropy(logŷ, y, weight = [.5, .5]) lossvalue/2
@test logitcrossentropy(logŷ, y, weight = [2, .5]) 1.5049660054074199
end
logŷ, y = randn(3), rand(3)
@testset "binarycrossentropy" begin
2018-08-11 11:50:27 +00:00
@test binarycrossentropy.(σ.(logŷ), y; ϵ=0) -y.*log.(σ.(logŷ)) - (1 .- y).*log.(1 .- σ.(logŷ))
@test binarycrossentropy.(σ.(logŷ), y) -y.*log.(σ.(logŷ) .+ eps.(σ.(logŷ))) - (1 .- y).*log.(1 .- σ.(logŷ) .+ eps.(σ.(logŷ)))
end
@testset "logitbinarycrossentropy" begin
@test logitbinarycrossentropy.(logŷ, y) binarycrossentropy.(σ.(logŷ), y; ϵ=0)
end
2019-03-11 21:06:37 +00:00
y = [1 2 3]
y1 = [4.0 5.0 6.0]
2019-03-25 21:39:48 +00:00
@testset "kldivergence" begin
@test Flux.kldivergence(y, y1) 4.761838062403337
@test Flux.kldivergence(y, y) 0
2019-03-11 21:06:37 +00:00
end
2019-03-11 21:28:32 +00:00
y = [1 2 3 4]
y1 = [5.0 6.0 7.0 8.0]
2019-03-25 21:39:48 +00:00
@testset "hinge" begin
@test Flux.hinge(y, y1) 0
@test Flux.hinge(y, 0.5 .* y) 0.125
2019-03-11 21:06:37 +00:00
end
y = [0.1 0.2 0.3]
y1 = [0.4 0.5 0.6]
2019-03-25 21:39:48 +00:00
@testset "poisson" begin
@test Flux.poisson(y, y1) 1.0160455586700767
@test Flux.poisson(y, y) 0.5044459776946685
2019-03-11 21:06:37 +00:00
end
@testset "no spurious promotions" begin
2019-06-14 17:54:31 +00:00
for T in (Float32, Float64)
y = rand(T, 2)
ŷ = rand(T, 2)
2020-01-13 13:03:30 +00:00
for f in (mse, crossentropy, logitcrossentropy, Flux.kldivergence, Flux.hinge, Flux.poisson)
2019-09-19 17:33:33 +00:00
fwd, back = Flux.pullback(f, , y)
2019-03-08 14:49:28 +00:00
@test fwd isa T
@test eltype(back(one(T))[1]) == T
end
end
end
end