34 lines
1.2 KiB
Markdown
34 lines
1.2 KiB
Markdown
![]() |
# GPU Support
|
|||
|
|
|||
|
Support for array operations on other hardware backends, like GPUs, is provided by external packages like [CuArrays](https://github.com/JuliaGPU/CuArrays.jl) and [CLArrays](https://github.com/JuliaGPU/CLArrays.jl). Flux doesn't care what array type you use, so we can just plug these in without any other changes.
|
|||
|
|
|||
|
For example, we can use `CuArrays` (with the `cu` array converter) to run our [basic example](models/basics.md) on an NVIDIA GPU.
|
|||
|
|
|||
|
```julia
|
|||
|
using CuArrays
|
|||
|
|
|||
|
W = cu(rand(2, 5))
|
|||
|
b = cu(rand(2))
|
|||
|
|
|||
|
predict(x) = W*x .+ b
|
|||
|
loss(x, y) = sum((predict(x) .- y).^2)
|
|||
|
|
|||
|
x, y = cu(rand(5)), cu(rand(2)) # Dummy data
|
|||
|
loss(x, y) # ~ 3
|
|||
|
```
|
|||
|
|
|||
|
Note that we convert both the parameters (`W`, `b`) and the data set (`x`, `y`) to cuda arrays. Taking derivatives and training works exactly as before.
|
|||
|
|
|||
|
If you define a structured model, like a `Dense` layer or `Chain`, you just need to convert the internal parameters. Flux provides `mapparams`, which allows you to alter all parameters of a model at once.
|
|||
|
|
|||
|
```julia
|
|||
|
d = Dense(10, 5, σ)
|
|||
|
d = mapparams(cu, d)
|
|||
|
d.W # Tracked CuArray
|
|||
|
d(cu(rand(10))) # CuArray output
|
|||
|
|
|||
|
m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
|
|||
|
m = mapparams(cu, m)
|
|||
|
d(cu(rand(10)))
|
|||
|
```
|