2017-02-23 22:28:18 +00:00
|
|
|
|
using MXNet
|
|
|
|
|
Flux.loadmx()
|
|
|
|
|
|
|
|
|
|
@testset "MXNet" begin
|
|
|
|
|
|
|
|
|
|
xs = rand(20)
|
|
|
|
|
d = Affine(20, 10)
|
|
|
|
|
|
2017-03-08 21:41:13 +00:00
|
|
|
|
dm = mxnet(d)
|
2017-02-23 22:28:18 +00:00
|
|
|
|
@test d(xs) ≈ dm(xs)
|
|
|
|
|
|
2017-03-30 14:54:42 +00:00
|
|
|
|
# m = Multi(20, 15)
|
|
|
|
|
# mm = mxnet(m)
|
|
|
|
|
# @test all(isapprox.(mm(xs), m(xs)))
|
2017-03-06 17:20:15 +00:00
|
|
|
|
|
2017-02-23 22:51:37 +00:00
|
|
|
|
@testset "Backward Pass" begin
|
|
|
|
|
d′ = deepcopy(d)
|
|
|
|
|
@test dm(xs) ≈ d(xs)
|
|
|
|
|
@test dm(xs) ≈ d′(xs)
|
|
|
|
|
|
|
|
|
|
Δ = back!(dm, randn(10), xs)
|
2017-03-30 18:36:59 +00:00
|
|
|
|
@test length(Δ[1]) == 20
|
2017-02-23 22:51:37 +00:00
|
|
|
|
update!(dm, 0.1)
|
|
|
|
|
|
|
|
|
|
@test dm(xs) ≈ d(xs)
|
|
|
|
|
@test dm(xs) ≉ d′(xs)
|
|
|
|
|
end
|
|
|
|
|
|
2017-02-23 22:28:18 +00:00
|
|
|
|
@testset "FeedForward interface" begin
|
|
|
|
|
f = mx.FeedForward(Chain(d, softmax))
|
|
|
|
|
@test mx.infer_shape(f.arch, data = (20, 1))[2] == [(10, 1)]
|
|
|
|
|
|
|
|
|
|
m = Chain(Input(28,28), Conv2D((5,5), out = 3), MaxPool((2,2)),
|
|
|
|
|
flatten, Affine(1587, 10), softmax)
|
|
|
|
|
f = mx.FeedForward(m)
|
2017-02-23 22:51:37 +00:00
|
|
|
|
# TODO: test run
|
2017-02-23 22:28:18 +00:00
|
|
|
|
@test mx.infer_shape(f.arch, data = (20, 20, 5, 1))[2] == [(10, 1)]
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@testset "Stack Traces" begin
|
|
|
|
|
model = TLP(Affine(10, 20), Affine(21, 15))
|
|
|
|
|
info("The following warning is normal")
|
2017-03-08 21:41:13 +00:00
|
|
|
|
dm = mxnet(model)
|
|
|
|
|
e = try dm(rand(10))
|
2017-02-23 22:28:18 +00:00
|
|
|
|
catch e e end
|
|
|
|
|
|
|
|
|
|
@test isa(e, DataFlow.Interpreter.Exception)
|
|
|
|
|
@test e.trace[1].func == Symbol("Flux.Affine")
|
|
|
|
|
@test e.trace[2].func == :TLP
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end
|