53 lines
1.3 KiB
Julia
53 lines
1.3 KiB
Julia
![]() |
# Based on https://arxiv.org/abs/1409.0473
|
|||
|
|
|||
|
using Flux
|
|||
|
using Flux: flip
|
|||
|
|
|||
|
# A recurrent model which takes a token and returns a context-depedent
|
|||
|
# annotation.
|
|||
|
|
|||
|
@net type Encoder
|
|||
|
forward
|
|||
|
backward
|
|||
|
token -> hcat(forward(token), backward(token))
|
|||
|
end
|
|||
|
|
|||
|
Encoder(in::Integer, out::Integer) =
|
|||
|
Encoder(LSTM(in, out÷2), flip(LSTM(in, out÷2)))
|
|||
|
|
|||
|
# A recurrent model which takes a sequence of annotations, attends, and returns
|
|||
|
# a predicted output token.
|
|||
|
|
|||
|
@net type Decoder
|
|||
|
attend
|
|||
|
recur
|
|||
|
state; y; N
|
|||
|
function (anns)
|
|||
|
energies = map(ann -> exp(attend(hcat(state{-1}, ann))[1]), seq(anns, N))
|
|||
|
weights = energies./sum(energies)
|
|||
|
ctx = sum(map((α, ann) -> α .* ann, weights, anns))
|
|||
|
(_, state), y = recur((state{-1},y{-1}), ctx)
|
|||
|
y
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
Decoder(in::Integer, out::Integer; N = 1) =
|
|||
|
Decoder(Affine(in+out, 1),
|
|||
|
unroll1(LSTM(in, out)),
|
|||
|
param(zeros(1, out)), param(zeros(1, out)), N)
|
|||
|
|
|||
|
# The model
|
|||
|
|
|||
|
Nalpha = 5 # The size of the input token vector
|
|||
|
Nphrase = 7 # The length of (padded) phrases
|
|||
|
Nhidden = 12 # The size of the hidden state
|
|||
|
|
|||
|
encode = Encoder(Nalpha, Nhidden)
|
|||
|
decode = Chain(Decoder(Nhidden, Nhidden, N = Nphrase), Affine(Nhidden, Nalpha), softmax)
|
|||
|
|
|||
|
model = Chain(
|
|||
|
unroll(encode, Nphrase, stateful = false),
|
|||
|
unroll(decode, Nphrase, stateful = false, seq = false))
|
|||
|
|
|||
|
xs = Batch([Seq(rand(Float32, Nalpha) for _ = 1:Nphrase)])
|