2019-11-08 15:48:11 +00:00
|
|
|
|
using CuArrays
|
2018-03-01 16:31:20 +00:00
|
|
|
|
using NNlib: logsoftmax, logσ
|
2017-11-09 15:03:57 +00:00
|
|
|
|
|
2017-08-19 19:52:29 +00:00
|
|
|
|
# Cost functions
|
|
|
|
|
|
2019-01-06 19:29:30 +00:00
|
|
|
|
mse(ŷ, y) = sum((ŷ .- y).^2) * 1 // length(y)
|
2017-08-19 19:52:29 +00:00
|
|
|
|
|
2019-10-17 15:01:28 +00:00
|
|
|
|
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
|
|
|
|
|
return -sum(y .* log.(ŷ)) * 1 // size(y, 2)
|
2017-12-05 23:38:15 +00:00
|
|
|
|
end
|
|
|
|
|
|
2019-10-17 15:01:28 +00:00
|
|
|
|
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
|
|
|
|
|
return -sum(y .* log.(ŷ)) .* weight * 1 // size(y, 2)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
|
|
|
|
|
return -sum(y .* log.(ŷ) .* weight) * 1 // size(y, 2)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight=nothing) = _crossentropy(ŷ, y, weight)
|
|
|
|
|
|
2018-02-06 11:32:46 +00:00
|
|
|
|
function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
2019-01-06 19:29:30 +00:00
|
|
|
|
return -sum(y .* logsoftmax(logŷ) .* weight) * 1 // size(y, 2)
|
2017-10-17 16:57:10 +00:00
|
|
|
|
end
|
2017-10-10 20:33:37 +00:00
|
|
|
|
|
2018-02-06 11:32:46 +00:00
|
|
|
|
"""
|
2018-06-26 18:29:06 +00:00
|
|
|
|
binarycrossentropy(ŷ, y; ϵ=eps(ŷ))
|
2018-02-06 11:32:46 +00:00
|
|
|
|
|
2018-06-26 17:43:16 +00:00
|
|
|
|
Return `-y*log(ŷ + ϵ) - (1-y)*log(1-ŷ + ϵ)`. The ϵ term provides numerical stability.
|
2018-02-06 11:32:46 +00:00
|
|
|
|
|
|
|
|
|
julia> binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0.])
|
|
|
|
|
3-element Array{Float64,1}:
|
|
|
|
|
1.4244
|
|
|
|
|
0.352317
|
|
|
|
|
0.86167
|
|
|
|
|
"""
|
2018-06-27 05:55:43 +00:00
|
|
|
|
binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ)
|
2018-02-06 11:32:46 +00:00
|
|
|
|
|
2019-11-08 15:48:11 +00:00
|
|
|
|
# Re-definition to fix interaction with CuArrays.
|
|
|
|
|
CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ)
|
|
|
|
|
|
2018-02-06 11:32:46 +00:00
|
|
|
|
"""
|
|
|
|
|
logitbinarycrossentropy(logŷ, y)
|
|
|
|
|
|
|
|
|
|
`logitbinarycrossentropy(logŷ, y)` is mathematically equivalent to `binarycrossentropy(σ(logŷ), y)`
|
|
|
|
|
but it is more numerically stable.
|
|
|
|
|
|
|
|
|
|
julia> logitbinarycrossentropy.([-1.1491, 0.8619, 0.3127], [1, 1, 0.])
|
|
|
|
|
3-element Array{Float64,1}:
|
|
|
|
|
1.4244
|
|
|
|
|
0.352317
|
|
|
|
|
0.86167
|
|
|
|
|
"""
|
|
|
|
|
logitbinarycrossentropy(logŷ, y) = (1 - y)*logŷ - logσ(logŷ)
|
|
|
|
|
|
2017-10-10 20:33:37 +00:00
|
|
|
|
"""
|
2019-02-08 18:49:53 +00:00
|
|
|
|
normalise(x::AbstractArray; dims=1)
|
2017-10-10 20:33:37 +00:00
|
|
|
|
|
2019-10-21 14:31:44 +00:00
|
|
|
|
Normalises `x` to mean 0 and standard deviation 1, across the dimensions given by `dims`. Defaults to normalising over columns.
|
|
|
|
|
|
|
|
|
|
julia> a = reshape(collect(1:9), 3, 3)
|
|
|
|
|
3×3 Array{Int64,2}:
|
|
|
|
|
1 4 7
|
|
|
|
|
2 5 8
|
|
|
|
|
3 6 9
|
|
|
|
|
|
|
|
|
|
julia> normalise(a)
|
|
|
|
|
3×3 Array{Float64,2}:
|
|
|
|
|
-1.22474 -1.22474 -1.22474
|
|
|
|
|
0.0 0.0 0.0
|
|
|
|
|
1.22474 1.22474 1.22474
|
|
|
|
|
|
|
|
|
|
julia> normalise(a, dims=2)
|
|
|
|
|
3×3 Array{Float64,2}:
|
|
|
|
|
-1.22474 0.0 1.22474
|
|
|
|
|
-1.22474 0.0 1.22474
|
|
|
|
|
-1.22474 0.0 1.22474
|
2017-10-10 20:33:37 +00:00
|
|
|
|
"""
|
2019-02-08 13:15:37 +00:00
|
|
|
|
function normalise(x::AbstractArray; dims=1)
|
2019-02-05 11:39:22 +00:00
|
|
|
|
μ′ = mean(x, dims = dims)
|
2019-02-05 13:06:04 +00:00
|
|
|
|
σ′ = std(x, dims = dims, mean = μ′, corrected=false)
|
2017-10-23 11:53:07 +00:00
|
|
|
|
return (x .- μ′) ./ σ′
|
2017-10-10 20:33:37 +00:00
|
|
|
|
end
|