Flux.jl/src/backend/tensorflow/tensorflow.jl

88 lines
2.2 KiB
Julia
Raw Normal View History

2016-09-27 01:16:49 +00:00
module TF
using ..Flux, Flow, TensorFlow
2016-09-29 19:50:43 +00:00
import Juno: info
import Flux: accuracy
export tf
2016-09-27 01:16:49 +00:00
# Workaround for tensor display bug
using Juno
Media.render(::Juno.Clipboard, ::Tensor) = "Tensor()"
cvalue(x) = x
cvalue(c::Constant) = c.value
cvalue(v::Vertex) = cvalue(value(v))
graph(x::Tensor) = x
# TODO: detect variable reuse
2016-09-29 19:50:43 +00:00
graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x')
2016-09-27 01:16:49 +00:00
function graph(model::Model, args...)
g = Flux.graph(model)
g = Flow.mapconst(g) do x
!isa(x, Flux.ModelInput) ? x :
isa(x.name, Integer) ? args[x.name] : getfield(model, x.name)
end
postwalk(g) do v
vertex(graph(cvalue(v), cvalue.(inputs(v))...))
end |> value
end
2016-09-29 19:50:43 +00:00
graph(::typeof(*), args...) = *(reverse(args)...)
2016-09-27 01:16:49 +00:00
graph(::typeof(+), args...) = +(args...)
2016-09-29 19:50:43 +00:00
graph(::typeof(softmax), x) = nn.softmax(x)
2016-09-27 01:16:49 +00:00
type Model
session::Session
inputs::Vector{Tensor}
graph::Tensor
2016-09-28 16:15:41 +00:00
grad::Tensor
2016-09-27 01:16:49 +00:00
end
Media.render(::Juno.Clipboard, ::Model) = "Flux.TF.Model()"
function tf(model)
2016-09-29 19:50:43 +00:00
sess = Session(Graph())
2016-09-27 01:16:49 +00:00
input = placeholder(Float64)
g = graph(model, input)
run(sess, initialize_all_variables())
2016-09-28 16:15:41 +00:00
Model(sess, [input], g, gradients(g, input))
2016-09-27 01:16:49 +00:00
end
function (m::Model)(args...)
@assert length(args) == length(m.inputs)
2016-09-29 19:50:43 +00:00
run(m.session, m.graph, Dict(zip(m.inputs, map(transpose, args))))'
2016-09-27 01:16:49 +00:00
end
2016-09-28 16:15:41 +00:00
function Flux.back!(m::Model, Δ, args...)
@assert length(args) == length(m.inputs)
# TODO: keyword arguments to `gradients`
run(m.session, m.grad, Dict(zip(m.inputs, args)))
end
function Flux.update!(m::Model)
error("update! is not yet supported on TensorFlow models")
end
2016-09-29 19:50:43 +00:00
function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
loss = (y, y) -> reduce_sum((y - y).^2)/2,
opt = TensorFlow.train.GradientDescentOptimizer(η))
i = 0
Y = placeholder(Float64)
Loss = loss(m.graph, Y)
minimize_op = TensorFlow.train.minimize(opt, Loss)
run(m.session, initialize_all_variables())
for e in 1:epoch
info("Epoch $e\n")
@progress for (x, y) in train
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op), Dict(m.inputs[1]=>x', Y=>y'))
i % 1000 == 0 && @show accuracy(m, test)
i += 1
end
end
end
2016-09-27 01:16:49 +00:00
end