2016-09-27 01:16:49 +00:00
|
|
|
|
module TF
|
|
|
|
|
|
|
|
|
|
using ..Flux, Flow, TensorFlow
|
2016-09-29 19:50:43 +00:00
|
|
|
|
import Juno: info
|
|
|
|
|
import Flux: accuracy
|
|
|
|
|
|
|
|
|
|
export tf
|
2016-09-27 01:16:49 +00:00
|
|
|
|
|
|
|
|
|
# Workaround for tensor display bug
|
|
|
|
|
using Juno
|
|
|
|
|
Media.render(::Juno.Clipboard, ::Tensor) = "Tensor()"
|
|
|
|
|
|
|
|
|
|
cvalue(x) = x
|
|
|
|
|
cvalue(c::Constant) = c.value
|
|
|
|
|
cvalue(v::Vertex) = cvalue(value(v))
|
|
|
|
|
|
|
|
|
|
graph(x::Tensor) = x
|
|
|
|
|
|
|
|
|
|
# TODO: detect variable reuse
|
2016-09-29 19:50:43 +00:00
|
|
|
|
graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x')
|
2016-09-27 01:16:49 +00:00
|
|
|
|
|
|
|
|
|
function graph(model::Model, args...)
|
|
|
|
|
g = Flux.graph(model)
|
|
|
|
|
g = Flow.mapconst(g) do x
|
|
|
|
|
!isa(x, Flux.ModelInput) ? x :
|
|
|
|
|
isa(x.name, Integer) ? args[x.name] : getfield(model, x.name)
|
|
|
|
|
end
|
|
|
|
|
postwalk(g) do v
|
|
|
|
|
vertex(graph(cvalue(v), cvalue.(inputs(v))...))
|
|
|
|
|
end |> value
|
|
|
|
|
end
|
|
|
|
|
|
2016-09-29 19:50:43 +00:00
|
|
|
|
graph(::typeof(*), args...) = *(reverse(args)...)
|
2016-09-27 01:16:49 +00:00
|
|
|
|
graph(::typeof(+), args...) = +(args...)
|
2016-09-29 19:50:43 +00:00
|
|
|
|
graph(::typeof(softmax), x) = nn.softmax(x)
|
2016-09-27 01:16:49 +00:00
|
|
|
|
|
|
|
|
|
type Model
|
|
|
|
|
session::Session
|
|
|
|
|
inputs::Vector{Tensor}
|
|
|
|
|
graph::Tensor
|
2016-09-28 16:15:41 +00:00
|
|
|
|
grad::Tensor
|
2016-09-27 01:16:49 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
Media.render(::Juno.Clipboard, ::Model) = "Flux.TF.Model()"
|
|
|
|
|
|
|
|
|
|
function tf(model)
|
2016-09-29 19:50:43 +00:00
|
|
|
|
sess = Session(Graph())
|
2016-09-27 01:16:49 +00:00
|
|
|
|
input = placeholder(Float64)
|
|
|
|
|
g = graph(model, input)
|
|
|
|
|
run(sess, initialize_all_variables())
|
2016-09-28 16:15:41 +00:00
|
|
|
|
Model(sess, [input], g, gradients(g, input))
|
2016-09-27 01:16:49 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function (m::Model)(args...)
|
|
|
|
|
@assert length(args) == length(m.inputs)
|
2016-09-29 19:50:43 +00:00
|
|
|
|
run(m.session, m.graph, Dict(zip(m.inputs, map(transpose, args))))'
|
2016-09-27 01:16:49 +00:00
|
|
|
|
end
|
|
|
|
|
|
2016-09-28 16:15:41 +00:00
|
|
|
|
function Flux.back!(m::Model, Δ, args...)
|
|
|
|
|
@assert length(args) == length(m.inputs)
|
|
|
|
|
# TODO: keyword arguments to `gradients`
|
|
|
|
|
run(m.session, m.grad, Dict(zip(m.inputs, args)))
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function Flux.update!(m::Model)
|
|
|
|
|
error("update! is not yet supported on TensorFlow models")
|
|
|
|
|
end
|
|
|
|
|
|
2016-09-29 19:50:43 +00:00
|
|
|
|
function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
|
|
|
|
|
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
|
|
|
|
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
|
|
|
|
i = 0
|
|
|
|
|
Y = placeholder(Float64)
|
|
|
|
|
Loss = loss(m.graph, Y)
|
|
|
|
|
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
|
|
|
|
run(m.session, initialize_all_variables())
|
|
|
|
|
for e in 1:epoch
|
|
|
|
|
info("Epoch $e\n")
|
|
|
|
|
@progress for (x, y) in train
|
|
|
|
|
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op), Dict(m.inputs[1]=>x', Y=>y'))
|
|
|
|
|
i % 1000 == 0 && @show accuracy(m, test)
|
|
|
|
|
i += 1
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
2016-09-27 01:16:49 +00:00
|
|
|
|
end
|