Flux.jl/test/compiler.jl

67 lines
1.4 KiB
Julia
Raw Normal View History

2017-08-19 19:20:20 +00:00
using DataFlow, MacroTools
using Flux: Affine, Param, Recurrent, squeeze, unsqueeze, stack
using Flux.Compiler: @net, graph
using DataFlow: Line, Frame
@net type TLP
first
second
function (x)
l1 = σ(first(x))
l2 = softmax(second(l1))
end
end
syntax(v::Vertex) = prettify(DataFlow.syntax(v))
syntax(x) = syntax(graph(x))
@testset "Compiler" begin
xs = randn(1, 10)
d = Affine(10, 20)
@test d(xs) (xs*d.W.x + d.b.x)
d1 = @net x -> x * d.W + d.b
let
@capture(syntax(d), _Frame(_Line((+).(x_[1] * W_, b_))))
@test isa(x, DataFlow.Input) && isa(W, Param) && isa(b, Param)
end
let a1 = Affine(10, 20), a2 = Affine(20, 15)
tlp = TLP(a1, a2)
@test tlp(xs) softmax(a2(σ(a1(xs))))
@test Flux.Compiler.interpmodel(tlp, xs) softmax(a2(σ(a1(xs))))
end
let tlp = TLP(Affine(10, 21), Affine(20, 15))
e = try
Flux.Compiler.interpmodel(tlp, rand(1, 10))
catch e
e
end
@test e.trace[end].func == :TLP
@test e.trace[end-1].func == Symbol("Flux.Affine")
end
function apply(model, xs, state)
ys = similar(xs, 0)
for x in xs
state, y = model(state, x)
push!(ys, y)
end
state, ys
end
@testset "RNN unrolling" begin
r = Recurrent(10, 5)
xs = [rand(1, 10) for _ = 1:3]
_, ys = apply(Flux.Compiler.unroll1(r).model, xs, (r.y.x,))
@test ys[1] == tanh(xs[1] * r.Wxy.x .+ r.y.x * r.Wyy.x .+ r.by.x)
ru = Flux.Compiler.unroll(r, 3)
ru(unsqueeze(stack(squeeze.(xs))))[1] == squeeze.(ys)
end
end