Flux.jl/src/backend/mxnet/model.jl

92 lines
2.2 KiB
Julia
Raw Normal View History

2017-01-28 17:02:49 +00:00
using MacroTools
type MXModel <: Model
model::Any
params::Dict{Symbol,Any}
grads::Dict{Symbol,Any}
2017-01-29 10:39:30 +00:00
stack::Dict{Any,Any}
2017-01-28 17:02:49 +00:00
exec::mx.Executor
end
2017-01-28 17:37:02 +00:00
tond(xs::AArray) = copy!(mx.zeros(size(xs)), xs)
2017-01-28 17:02:49 +00:00
ndzero!(xs::mx.NDArray) = copy!(xs, mx.zeros(size(xs)))
function mxargs(args)
map(args) do kv
arg, value = kv
arg => tond(value)
end
end
function mxgrads(mxargs)
map(mxargs) do kv
arg, value = kv
arg => mx.zeros(size(value))
end
end
function loadparams!(model::MXModel)
for (name, arr) in model.exec.arg_dict
2017-01-28 17:37:22 +00:00
haskey(model.params, name) && copy!(arr, model.params[name])
2017-01-28 17:02:49 +00:00
end
return model
end
function mxnet(model::Model, input)
params, stacks, node = tograph(model, mx.Variable(:input))
2017-01-28 17:37:02 +00:00
args = merge(mxargs(params), Dict(:input => mx.zeros(input)))
2017-01-28 17:02:49 +00:00
grads = mxgrads(args)
2017-01-29 10:39:30 +00:00
model = MXModel(model, params, grads, stacks,
2017-01-28 17:02:49 +00:00
mx.bind(node, args = args,
args_grad = grads,
grad_req = mx.GRAD_ADD))
loadparams!(model)
return model
end
function (model::MXModel)(input)
2017-01-28 17:37:22 +00:00
copy!(model.exec.arg_dict[:input], input)
2017-01-28 17:02:49 +00:00
mx.forward(model.exec, is_train = true)
2017-01-29 11:28:22 +00:00
copy(model.exec.outputs[1])
2017-01-28 17:02:49 +00:00
end
function Flux.back!(model::MXModel, Δ, x)
ndzero!(model.grads[:input])
mx.backward(model.exec, tond(Δ))
2017-01-29 11:28:22 +00:00
copy(model.grads[:input])
2017-01-28 17:02:49 +00:00
end
function Flux.update!(model::MXModel, η)
for (arg, grad) in zip(model.exec.arg_arrays, model.exec.grad_arrays)
mx.@nd_as_jl rw = (arg, grad) begin
arg .-= grad .* η
grad[:] = 0
end
end
return model
end
# MX FeedForward interface
type SoftmaxOutput
name::Symbol
end
graph(s::SoftmaxOutput, xs) = mx.SoftmaxOutput(data = xs, name = s.name)
function rewrite_softmax(model, name)
model == softmax && return SoftmaxOutput(name)
g = Flux.graph(model)
(g == nothing || value(g) softmax || DataFlow.nin(g) 1) && error("mx.FeedForward models must end with `softmax`")
return Flux.Capacitor(vertex(SoftmaxOutput(name), g[1]))
end
function mx.FeedForward(model::Model; input = :data, label = :softmax, context = mx.cpu())
model = rewrite_softmax(model, label)
node, vars = mxgraph(model, input)
ff = mx.FeedForward(node, context = context)
ff.arg_params = mxargs(vars)
return ff
end