Flux.jl/src/dims/batching.jl

45 lines
932 B
Julia
Raw Normal View History

2016-12-15 21:37:07 +00:00
export Batch, batchone
2016-10-25 12:48:30 +00:00
immutable Batch{T,S} <: AbstractVector{T}
data::CatMat{T,S}
end
@forward Batch.data size, eltype, getindex, setindex!, rawbatch
Batch(xs) = Batch(CatMat(xs))
convert{T,S}(::Type{Batch{T,S}},storage::S) =
Batch{T,S}(storage)
@render Juno.Inline b::Batch begin
Tree(Row(Text("Batch of "), eltype(b),
Juno.fade("[$(length(b))]")),
Juno.trim(collect(b)))
end
2017-01-24 10:24:30 +00:00
# Convenience methods for batch size 1
batchone(x) = Batch((x,))
batchone(x::Batch) = x
batchone(x::Tuple) = map(batchone, x)
function unbatchone(xs::Batch)
@assert length(xs) == 1
return first(xs)
end
unbatchone(xs::Tuple) = map(unbatchone, xs)
function rebatch(xs)
dims = ndims(xs)-1
T = Array{eltype(xs),dims}
B = Array{eltype(xs),dims+1}
Batch{T,B}(xs)
end
2017-01-26 18:07:06 +00:00
2017-03-06 16:12:03 +00:00
rebatch(xs::Tuple) = map(rebatch, xs)
2017-01-26 18:07:06 +00:00
convertel(T::Type, xs::Batch) =
isa(eltype(eltype(xs)), T) ? xs :
Batch(map(x->convertel(T, x), xs))