Flux.jl/src/tracker/lib.jl

103 lines
3.5 KiB
Julia
Raw Normal View History

2017-08-19 09:14:50 +00:00
import Base: *
2017-08-22 11:24:08 +00:00
toarray(xs::AbstractArray, ys::AbstractArray) = ys
2017-08-22 14:12:12 +00:00
toarray(xs::AbstractArray, y) = similar(xs, typeof(y), ()) .= y
2017-08-22 11:24:08 +00:00
Base.getindex(xs::TrackedArray, i...) =
TrackedArray(Call(getindex, xs, i...), toarray(xs.x, xs.x[i...]))
2017-08-19 09:14:50 +00:00
2017-08-19 15:02:19 +00:00
function back!(::typeof(getindex), Δ, xs::TrackedArray, i...)
2017-08-22 11:24:08 +00:00
Δ′ = zeros(xs.x)
2017-08-19 15:02:19 +00:00
Δ′[i...] = Δ
2017-08-19 16:40:07 +00:00
@back!(xs, Δ′)
2017-08-19 15:02:19 +00:00
end
Base.:-(xs::TrackedArray) = TrackedArray(Call(-, xs))
2017-08-23 16:50:43 +00:00
back!(::typeof(-), Δ, xs::TrackedArray) = back!(xs, -Δ)
2017-09-01 15:42:18 +00:00
Base.transpose(xs::TrackedArray) = TrackedArray(Call(transpose, xs))
Base.ctranspose(xs::TrackedArray) = TrackedArray(Call(ctranspose, xs))
2017-08-22 11:24:08 +00:00
# Reductions
2017-08-22 14:12:12 +00:00
Base.sum(xs::TrackedArray, dim) = TrackedArray(Call(sum, xs, dim))
2017-08-22 11:24:08 +00:00
Base.sum(xs::TrackedArray) = TrackedArray(Call(sum, xs), toarray(xs.x, sum(xs.x)))
2017-08-23 16:50:43 +00:00
Base.sum(xs::TrackedScalar, dim...) = xs
2017-08-22 11:24:08 +00:00
2017-08-22 14:12:12 +00:00
back!(::typeof(sum), Δ, xs::TrackedArray, dim...) = back!(xs, similar(xs.x) .= Δ)
2017-08-22 11:24:08 +00:00
2017-09-02 03:33:05 +00:00
Base.maximum(xs::TrackedArray, args...) = maximum(xs.x, args...)
Base.findfirst(xs::TrackedArray, args...) = findfirst(xs.x, args...)
2017-08-22 11:24:08 +00:00
# BLAS
2017-08-19 15:02:19 +00:00
a::TrackedMatrix * b::TrackedMatrix = TrackedArray(Call(*, a, b))
a::TrackedMatrix * b::AbstractMatrix = TrackedArray(Call(*, a, b))
a::AbstractMatrix * b::TrackedMatrix = TrackedArray(Call(*, a, b))
2017-08-20 12:48:43 +00:00
a::TrackedMatrix * b::TrackedVector = TrackedArray(Call(*, a, b))
a::TrackedMatrix * b::AbstractVector = TrackedArray(Call(*, a, b))
a::AbstractMatrix * b::TrackedVector = TrackedArray(Call(*, a, b))
function back!(::typeof(*), Δ, a::AbstractMatrix, b::AbstractVecOrMat)
2017-08-19 16:40:07 +00:00
@back!(a, A_mul_Bt(Δ, data(b)))
@back!(b, At_mul_B(data(a), Δ))
2017-08-19 15:02:19 +00:00
end
2017-08-23 01:03:17 +00:00
# NNlib
import NNlib: softmax, ∇softmax
softmax(xs::TrackedArray) = TrackedArray(Call(softmax, xs))
back!(::typeof(softmax), Δ, xs) = @back!(xs, ∇softmax(Δ, data(xs)))
2017-08-19 15:02:19 +00:00
# Broadcasting
using ForwardDiff: Dual, partials
struct Broadcasted{T}
data::T
end
(b::Broadcasted)(xs...) = map(x -> x.value, b.data)
dualify(xs, n) = xs
2017-08-21 15:35:39 +00:00
dualify(xs::TrackedArray, ps) = map(x -> Dual(x, ps), data(xs))
2017-08-19 15:02:19 +00:00
function tracked_broadcast(f, args::Vararg{Any,N}) where N
2017-08-20 12:35:20 +00:00
dargs = map((x,i) -> dualify(x, ntuple(j -> i==j, Val{N})), args, ntuple(identity, Val{N}))
# TrackedArray(Call(Broadcasted(broadcast(f, dargs...)), args...))
# Works around a 0.6 type inference issue
b = Broadcasted(broadcast(f, dargs...))
TrackedArray(Call(b, args...), b())
2017-08-19 15:02:19 +00:00
end
2017-08-27 08:49:42 +00:00
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val{ndims(x)}))
2017-08-22 23:25:19 +00:00
unbroadcast(x, Δ) =
size(x) == size(Δ) ? Δ :
2017-08-27 08:49:42 +00:00
trim(x, sum(Δ, filter(n -> size(x, n) == 1, 1:ndims(Δ))))
2017-08-22 23:25:19 +00:00
2017-08-28 00:40:59 +00:00
function getpartial(Δ, x, i)
@inbounds p = getindex(partials(x), i)
return Δ * p
end
function back!(b::Broadcasted, Δ, args::Vararg{Any,N}) where N
Δargs = ntuple(i -> getpartial.(Δ, b.data, i), Val{N})
2017-08-22 23:25:19 +00:00
foreach((x, Δ) -> @back!(x, unbroadcast(x, Δ)), args, Δargs)
2017-08-19 09:14:50 +00:00
end
2017-08-19 15:02:19 +00:00
Base.Broadcast._containertype(::Type{<:TrackedArray}) = TrackedArray
2017-08-23 16:50:43 +00:00
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ::Type{TrackedArray}) = TrackedArray
2017-08-19 15:02:19 +00:00
Base.Broadcast.promote_containertype(::Type{Array}, ::Type{TrackedArray}) = TrackedArray
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ::Type{Array}) = TrackedArray
2017-08-23 16:21:02 +00:00
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ct) = TrackedArray
Base.Broadcast.promote_containertype(ct, ::Type{TrackedArray}) = TrackedArray
2017-08-19 15:02:19 +00:00
Base.Broadcast.broadcast_indices(::Type{TrackedArray}, A::Ref) = ()
Base.Broadcast.broadcast_indices(::Type{TrackedArray}, A) = indices(A)
Base.Broadcast.broadcast_c(f, ::Type{TrackedArray}, A, Bs...) = tracked_broadcast(f, A, Bs...)