diff --git a/src/cuda/cudnn.jl b/src/cuda/cudnn.jl index 8fffa581..e292ac1c 100644 --- a/src/cuda/cudnn.jl +++ b/src/cuda/cudnn.jl @@ -109,8 +109,9 @@ function getreserve(r::RNNDesc, seqlen, xdesc) sz ≤ length(r.reserve) ? r.reserve : (r.reserve = CuVector{UInt8}(sz)) end -function cudnnRNNForward(::Type{T}, rnn, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co, workspace, reserve=nothing) where T - if reserve == nothing +function cudnnRNNForward(::Type{T}, rnn, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co, + workspace, reserve=nothing; train = (reserve ≠ nothing)) where T + if !train @check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t, (Ptr{Void}, Ptr{Void}, Cint, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Ptr{Void}}, Ptr{T}, Ptr{Void}, Ptr{T}, Ptr{Void}, Ptr{T}, @@ -129,7 +130,7 @@ function cudnnRNNForward(::Type{T}, rnn, seqlen, xd, x, hd, h, cd, c, wd, w, yd, end end -function forward(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing; train = Val{false}) where T +function forward(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing; train = false) where T @assert size(x, 1) == rnn.input @assert size(h, 1) == rnn.hidden @assert size(x, 2) == size(h, 2) @@ -138,7 +139,7 @@ function forward(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing; tra y = x isa AbstractVector ? similar(x, rnn.hidden) : similar(x, rnn.hidden, size(x, 2)) ydesc = [TensorDesc(T, (1, size(y, 1), size(y, 2)))] workspace = CuVector{UInt8}(rnnWorkspaceSize(rnn, seqLength, xdesc)) # TODO: reuse this - reserve = train == Val{true} ? getreserve(rnn, seqLength, xdesc) : nothing + reserve = train ? getreserve(rnn, seqLength, xdesc) : rnn.reserve if c ≠ nothing @assert size(c, 1) == rnn.hidden @assert size(c, 2) == size(h, 2) @@ -157,7 +158,7 @@ function forward(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing; tra ydesc, y, C_NULL, C_NULL, # hout coutdesc, cout, - workspace, reserve) + workspace, reserve, train = train) if c == nothing return y, y else @@ -217,16 +218,16 @@ end istrain(m::CuRNNs, args...) = any(x -> x isa TrackedArray, (m.Wi, m.Wh, m.b, args...)) function (m::CuRNN{T})(h::CuParam{T}, x::CuParam{T}) where T <: Union{Float32,Float64} - y, h = forward(desc(m), Flux.data(x), Flux.data(h), train = Val{istrain(m, h, x)}) + y, h = forward(desc(m), Flux.data(x), Flux.data(h), train = istrain(m, h, x)) return h, y end function (m::CuGRU{T})(h::CuParam{T}, x::CuParam{T}) where T <: Union{Float32,Float64} - y, h = forward(desc(m), Flux.data(x), Flux.data(h), train = Val{istrain(m, h, x)}) + y, h = forward(desc(m), Flux.data(x), Flux.data(h), train = istrain(m, h, x)) return h, y end function (m::CuLSTM{T})(h::NTuple{2,CuParam{T}}, x::CuParam{T}) where T <: Union{Float32,Float64} - y, h, c = forward(desc(m), Flux.data(x), Flux.data.(h)..., train = Val{istrain(m, h, x)}) + y, h, c = forward(desc(m), Flux.data(x), Flux.data.(h)..., train = istrain(m, h, x)) return (h, c), y end