Updated loss function docs
This commit is contained in:
parent
57c1b67d08
commit
08dabce57e
|
@ -29,7 +29,7 @@ msle(ŷ, y;ϵ1=eps.(ŷ),ϵ2=eps.(eltype(ŷ).(y))) = sum((log.(ŷ+ϵ1).-log.(
|
||||||
huber_loss(ŷ, y,delta=1.0)
|
huber_loss(ŷ, y,delta=1.0)
|
||||||
|
|
||||||
Computes the mean of the Huber loss. By default, delta is set to 1.0.
|
Computes the mean of the Huber loss. By default, delta is set to 1.0.
|
||||||
| 0.5*|(ŷ-y)|, for |ŷ-y|<delta
|
| 0.5*|(ŷ-y)|, for |ŷ-y|<=delta
|
||||||
Hubber loss = |
|
Hubber loss = |
|
||||||
| delta*(|ŷ-y| - 0.5*delta), otherwise
|
| delta*(|ŷ-y| - 0.5*delta), otherwise
|
||||||
|
|
||||||
|
@ -169,7 +169,7 @@ poisson(ŷ, y) = sum(ŷ .- y .* log.(ŷ)) *1 // size(y,2)
|
||||||
Measures the loss given the prediction `ŷ` and true labels `y` (containing 1 or -1).
|
Measures the loss given the prediction `ŷ` and true labels `y` (containing 1 or -1).
|
||||||
|
|
||||||
[Hinge Loss](https://en.wikipedia.org/wiki/Hinge_loss)
|
[Hinge Loss](https://en.wikipedia.org/wiki/Hinge_loss)
|
||||||
See also [`squared_hinge`](@ref)
|
See also [`squared_hinge`](@ref).
|
||||||
"""
|
"""
|
||||||
hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
|
hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
|
||||||
|
|
||||||
|
@ -178,7 +178,7 @@ hinge(ŷ, y) = sum(max.(0, 1 .- ŷ .* y)) *1 // size(y,2)
|
||||||
|
|
||||||
Computes squared hinge loss given the prediction `ŷ` and true labels `y` (conatining 1 or -1)
|
Computes squared hinge loss given the prediction `ŷ` and true labels `y` (conatining 1 or -1)
|
||||||
|
|
||||||
See also [`hinge`](@ref)
|
See also [`hinge`](@ref).
|
||||||
"""
|
"""
|
||||||
squared_hinge(ŷ, y) = sum((max.(0,1 .-ŷ .* y)).^2) *1//size(y,2)
|
squared_hinge(ŷ, y) = sum((max.(0,1 .-ŷ .* y)).^2) *1//size(y,2)
|
||||||
|
|
||||||
|
@ -186,8 +186,8 @@ squared_hinge(ŷ, y) = sum((max.(0,1 .-ŷ .* y)).^2) *1//size(y,2)
|
||||||
dice_coeff_loss(y_pred,y_true,smooth = 1)
|
dice_coeff_loss(y_pred,y_true,smooth = 1)
|
||||||
|
|
||||||
Loss function used in Image Segmentation. Calculates loss based on dice coefficient. Similar to F1_score
|
Loss function used in Image Segmentation. Calculates loss based on dice coefficient. Similar to F1_score
|
||||||
Dice_Coefficient(A,B) = 2*sum(|A*B|+smooth)/(sum(A^2)+sum(B^2)+ smooth)
|
Dice_Coefficient(A,B) = 2 * sum( |A*B| + smooth) / (sum( A^2 ) + sum( B^2 )+ smooth)
|
||||||
Dice_loss = 1-Dice_Coefficient
|
Dice_loss = 1 - Dice_Coefficient
|
||||||
|
|
||||||
Ref: [V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
|
Ref: [V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue