tf reorg
This commit is contained in:
parent
82d69757c7
commit
0ad569596b
|
@ -0,0 +1,53 @@
|
|||
import Flow: Constant, postwalk, value, inputs, constant
|
||||
import TensorFlow: RawTensor
|
||||
|
||||
cvalue(x) = x
|
||||
cvalue(c::Constant) = c.value
|
||||
cvalue(v::Vertex) = cvalue(value(v))
|
||||
|
||||
graph(x::Tensor) = x
|
||||
|
||||
graph(::typeof(*), args...) = *(args...)
|
||||
graph(::typeof(+), args...) = +(args...)
|
||||
graph(::typeof(softmax), x) = nn.softmax(x)
|
||||
graph(::typeof(relu), x) = nn.relu(x)
|
||||
graph(::typeof(tanh), x) = tanh(x)
|
||||
|
||||
# reshape hack due to https://github.com/malmaud/TensorFlow.jl/issues/79
|
||||
batchsize(x::Tensor) = reduce_sum(slice(TensorFlow.shape(x), [0], [1]))
|
||||
graph(::typeof(flatten), x) = reshape(x, pack([batchsize(x), Int32(-1)]))
|
||||
graph(r::Reshape, x) = reshape(x, pack([batchsize(x), map(Int32, r.dims)...]))
|
||||
|
||||
graph(::Input, x) = x
|
||||
|
||||
graph(c::Conv2D, x) =
|
||||
nn.conv2d(x, graph(c.filter), [1,c.stride...,1], "VALID")
|
||||
|
||||
graph(p::MaxPool, x) =
|
||||
nn.max_pool(x, [1, p.size..., 1], [1, p.stride..., 1], "VALID")
|
||||
|
||||
type Op
|
||||
f
|
||||
shape
|
||||
end
|
||||
|
||||
Op(f) = Op(f, (d...) -> nothing)
|
||||
|
||||
graph(op::Op, xs...) = op.f(xs...)
|
||||
Flux.shape(op::Op, d...) = op.shape(d...)
|
||||
|
||||
# TODO: detect variable reuse
|
||||
graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x)
|
||||
|
||||
function graph(model::Model, args...)
|
||||
g = Flux.graph(model)
|
||||
g ≠ nothing || error("No graph for $model")
|
||||
g = spliceinputs(g, map(constant, args)...) |> detuple
|
||||
postwalk(g) do v
|
||||
vertex(graph(cvalue(v), cvalue.(inputs(v))...))
|
||||
end |> value
|
||||
end
|
||||
|
||||
TensorFlow.Tensor(m::Flux.Model, args...) = graph(m, args...)
|
||||
|
||||
RawTensor(data::Union{Batch,Seq}) = RawTensor(rawbatch(data))
|
|
@ -0,0 +1,56 @@
|
|||
type Model
|
||||
session::Session
|
||||
inputs::Vector{Tensor}
|
||||
graph::Tensor
|
||||
grad::Tensor
|
||||
end
|
||||
|
||||
function tf(model)
|
||||
sess = Session(Graph())
|
||||
input = placeholder(Float32)
|
||||
g = graph(model, input)
|
||||
run(sess, initialize_all_variables())
|
||||
Model(sess, [input], g, gradients(g, input))
|
||||
end
|
||||
|
||||
batch(x) = Batch((x,))
|
||||
|
||||
function (m::Model)(args::Batch...)
|
||||
@assert length(args) == length(m.inputs)
|
||||
run(m.session, m.graph, Dict(zip(m.inputs, args)))
|
||||
end
|
||||
|
||||
(m::Model)(args...) = m(map(batch, args)...)
|
||||
|
||||
function Flux.back!(m::Model, Δ, args...)
|
||||
@assert length(args) == length(m.inputs)
|
||||
# TODO: keyword arguments to `gradients`
|
||||
run(m.session, m.grad, Dict(zip(m.inputs, args)))
|
||||
end
|
||||
|
||||
function Flux.update!(m::Model)
|
||||
error("update! is not yet supported on TensorFlow models")
|
||||
end
|
||||
|
||||
import Juno: info
|
||||
|
||||
function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
|
||||
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
||||
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
||||
i = 0
|
||||
Y = placeholder(Float32)
|
||||
Loss = loss(m.graph, Y)
|
||||
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
||||
for e in 1:epoch
|
||||
info("Epoch $e\n")
|
||||
@progress for (x, y) in train
|
||||
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op),
|
||||
Dict(m.inputs[1]=>batch(x), Y=>batch(y)))
|
||||
if i % 5000 == 0
|
||||
@show y
|
||||
@show accuracy(m, test)
|
||||
end
|
||||
i += 1
|
||||
end
|
||||
end
|
||||
end
|
|
@ -1,117 +1,11 @@
|
|||
module TF
|
||||
|
||||
using ..Flux, Flow, TensorFlow, Juno
|
||||
import Flow: Constant, postwalk, value, inputs, constant
|
||||
import Flux: accuracy, spliceinputs, detuple
|
||||
import TensorFlow: RawTensor
|
||||
import Juno: info
|
||||
|
||||
export tf
|
||||
|
||||
cvalue(x) = x
|
||||
cvalue(c::Constant) = c.value
|
||||
cvalue(v::Vertex) = cvalue(value(v))
|
||||
|
||||
graph(x::Tensor) = x
|
||||
|
||||
# TODO: detect variable reuse
|
||||
graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x)
|
||||
|
||||
function graph(model::Model, args...)
|
||||
g = Flux.graph(model)
|
||||
g ≠ nothing || error("No graph for $model")
|
||||
g = spliceinputs(g, map(constant, args)...) |> detuple
|
||||
postwalk(g) do v
|
||||
vertex(graph(cvalue(v), cvalue.(inputs(v))...))
|
||||
end |> value
|
||||
end
|
||||
|
||||
graph(::typeof(*), args...) = *(args...)
|
||||
graph(::typeof(+), args...) = +(args...)
|
||||
graph(::typeof(softmax), x) = nn.softmax(x)
|
||||
graph(::typeof(relu), x) = nn.relu(x)
|
||||
graph(::typeof(tanh), x) = tanh(x)
|
||||
|
||||
# reshape hack due to https://github.com/malmaud/TensorFlow.jl/issues/79
|
||||
batchsize(x::Tensor) = reduce_sum(slice(TensorFlow.shape(x), [0], [1]))
|
||||
graph(::typeof(flatten), x) = reshape(x, pack([batchsize(x), Int32(-1)]))
|
||||
graph(r::Reshape, x) = reshape(x, pack([batchsize(x), map(Int32, r.dims)...]))
|
||||
|
||||
graph(::Input, x) = x
|
||||
|
||||
graph(c::Conv2D, x) =
|
||||
nn.conv2d(x, graph(c.filter), [1,c.stride...,1], "VALID")
|
||||
|
||||
graph(p::MaxPool, x) =
|
||||
nn.max_pool(x, [1, p.size..., 1], [1, p.stride..., 1], "VALID")
|
||||
|
||||
TensorFlow.Tensor(m::Flux.Model, args...) = graph(m, args...)
|
||||
|
||||
type Model
|
||||
session::Session
|
||||
inputs::Vector{Tensor}
|
||||
graph::Tensor
|
||||
grad::Tensor
|
||||
end
|
||||
|
||||
function tf(model)
|
||||
sess = Session(Graph())
|
||||
input = placeholder(Float32)
|
||||
g = graph(model, input)
|
||||
run(sess, initialize_all_variables())
|
||||
Model(sess, [input], g, gradients(g, input))
|
||||
end
|
||||
|
||||
batch(x) = Batch((x,))
|
||||
|
||||
RawTensor(data::Batch) = RawTensor(rawbatch(data))
|
||||
|
||||
function (m::Model)(args::Batch...)
|
||||
@assert length(args) == length(m.inputs)
|
||||
run(m.session, m.graph, Dict(zip(m.inputs, args)))
|
||||
end
|
||||
|
||||
(m::Model)(args...) = m(map(batch, args)...)
|
||||
|
||||
function Flux.back!(m::Model, Δ, args...)
|
||||
@assert length(args) == length(m.inputs)
|
||||
# TODO: keyword arguments to `gradients`
|
||||
run(m.session, m.grad, Dict(zip(m.inputs, args)))
|
||||
end
|
||||
|
||||
function Flux.update!(m::Model)
|
||||
error("update! is not yet supported on TensorFlow models")
|
||||
end
|
||||
|
||||
function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
|
||||
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
||||
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
||||
i = 0
|
||||
Y = placeholder(Float32)
|
||||
Loss = loss(m.graph, Y)
|
||||
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
||||
for e in 1:epoch
|
||||
info("Epoch $e\n")
|
||||
@progress for (x, y) in train
|
||||
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op),
|
||||
Dict(m.inputs[1]=>batch(x), Y=>batch(y)))
|
||||
if i % 5000 == 0
|
||||
@show y
|
||||
@show accuracy(m, test)
|
||||
end
|
||||
i += 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
type Op
|
||||
f
|
||||
shape
|
||||
end
|
||||
|
||||
Op(f) = Op(f, (d...) -> nothing)
|
||||
|
||||
graph(op::Op, xs...) = op.f(xs...)
|
||||
Flux.shape(op::Op, d...) = op.shape(d...)
|
||||
include("graph.jl")
|
||||
include("model.jl")
|
||||
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue