document regularisation, fixes #160

This commit is contained in:
Mike J Innes 2018-02-09 19:00:26 +00:00
parent 0e0057b0c4
commit 0b3c02fe8d
3 changed files with 54 additions and 0 deletions

View File

@ -10,6 +10,7 @@ makedocs(modules=[Flux, NNlib],
"Building Models" =>
["Basics" => "models/basics.md",
"Recurrence" => "models/recurrence.md",
"Regularisation" => "models/regularisation.md",
"Model Reference" => "models/layers.md"],
"Training Models" =>
["Optimisers" => "training/optimisers.md",

View File

@ -0,0 +1,47 @@
# Regularisation
Applying regularisation to model parameters is straightforward. We just need to
apply an appropriate regulariser, such as `norm`, to each model parameter and
add the result to the overall loss.
For example, say we have a simple regression.
```julia
m = Dense(10, 5)
loss(x, y) = crossentropy(softmax(m(x)), y)
```
We can regularise this by taking the (L2) norm of the parameters, `m.W` and `m.b`.
```julia
penalty() = norm(m.W) + norm(m.b)
loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()
```
When working with layers, Flux provides the `params` function to grab all
parameters at once. We can easily penalise everything with `sum(norm, params)`.
```julia
julia> params(m)
2-element Array{Any,1}:
param([0.355408 0.533092; … 0.430459 0.171498])
param([0.0, 0.0, 0.0, 0.0, 0.0])
julia> sum(norm, params(m))
26.01749952921026 (tracked)
```
Here's a larger example with a multi-layer perceptron.
```julia
m = Chain(
Dense(28^2, 128, relu),
Dense(128, 32, relu),
Dense(32, 10), softmax)
ps = params(m)
loss(x, y) = crossentropy(m(x), y) + sum(norm, ps)
loss(rand(28^2), rand(10))
```

View File

@ -113,6 +113,7 @@ back(::typeof(reshape), Δ, xs::TrackedArray, _...) =
Base.sum(xs::TrackedArray, dim) = track(sum, xs, dim)
Base.sum(xs::TrackedArray) = track(sum, xs)
Base.sum(f::Union{Function,Type},xs::TrackedArray) = sum(f.(xs))
back(::typeof(sum), Δ, xs::TrackedArray, dim...) = back(xs, similar(xs.data) .= Δ)
@ -137,6 +138,11 @@ Base.std(x::TrackedArray; mean = Base.mean(x)) =
Base.std(x::TrackedArray, dim; mean = Base.mean(x, dim)) =
sqrt.(sum((x .- mean).^2, dim) ./ (size(x, dim)-1))
Base.norm(x::TrackedArray, p::Real = 2) =
p == 1 ? sum(abs.(x)) :
p == 2 ? sqrt(sum(abs2.(x))) :
error("$p-norm not supported")
back(::typeof(mean), Δ, xs::TrackedArray) = back(xs, similar(xs.data) .= Δ ./ length(xs.data))
back(::typeof(mean), Δ, xs::TrackedArray, region) =
back(xs, similar(xs.data) .= Δ ./ prod(size(xs.data, region...)))