Tests for Optimisers supporting Zygote

This commit is contained in:
thebhatman 2019-06-06 04:09:17 +05:30
parent fecb6bd16f
commit 0ddb5f0265
1 changed files with 82 additions and 82 deletions

View File

@ -2,87 +2,87 @@ using Flux.Optimise
using Flux.Optimise: runall
using Zygote: Params, gradient
using Test
# @testset "Optimise" begin
# w = randn(10, 10)
# @testset for opt in [ADAMW(), ADAGrad(0.1), AdaMax(), ADADelta(0.9), AMSGrad(),
# NADAM(), Descent(0.1), ADAM(), Nesterov(), RMSProp(),
# Momentum()]
# w = randn(10, 10)
# loss(x) = Flux.mse(w*x, w*x)
# for t = 1: 10^5
# θ = Params([w])
# θ̄ = gradient(() -> loss(rand(10)), θ)
# Optimise.update!(opt, θ, θ̄)
# end
# @test Flux.mse(w, w) < 0.01
# end
# end
@testset "Optimise" begin
w = randn(10, 10)
@testset for opt in [ADAMW(), ADAGrad(0.1), AdaMax(), ADADelta(0.9), AMSGrad(),
NADAM(), Descent(0.1), ADAM(), Nesterov(), RMSProp(),
Momentum()]
w = randn(10, 10)
loss(x) = Flux.mse(w*x, w*x)
for t = 1: 10^5
θ = Params([w])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
Optimise.update!(opt, θ, θ̄)
end
@test loss(rand(10, 10)) < 0.01
end
end
# @testset "Optimiser" begin
# w = randn(10, 10)
# @testset for Opt in [InvDecay, WeightDecay, ExpDecay]
# w = param(randn(10, 10))
# loss(x) = Flux.mse(w*x, w*x)
# opt = Optimiser(Opt(), ADAM(0.001))
# for t = 1:10^5
# l = loss(rand(10))
# back!(l)
# delta = Optimise.apply!(opt, w.data, w.grad)
# w.data .-= delta
# end
# @test Flux.mse(w, w) < 0.01
# end
# end
@testset "Optimiser" begin
w = randn(10, 10)
@testset for Opt in [InvDecay, WeightDecay, ExpDecay]
w = randn(10, 10)
loss(x) = Flux.mse(w*x, w*x)
opt = Optimiser(Opt(), ADAM(0.001))
for t = 1:10^5
θ = Params([w])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
Optimise.update!(opt, θ, θ̄)
end
@test loss(rand(10, 10)) < 0.01
end
end
# @testset "Training Loop" begin
# i = 0
# l = 1
#
# Flux.train!(() -> (sleep(0.1); i += 1; l),
# (),
# Iterators.repeated((), 100),
# Descent(),
# cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1))
#
# @test 3 < i < 50
#
# # Test multiple callbacks
# x = 0
# fs = [() -> (), () -> x = 1]
# cbs = runall(fs)
# cbs()
# @test x == 1
# end
#
# @testset "ExpDecay" begin
# w = randn(10, 10)
# o = ExpDecay(0.1, 0.1, 1000, 1e-4)
# w1 = param(randn(10,10))
# loss(x) = Flux.mse(w*x, w1*x)
# flag = 1
# decay_steps = []
# for t = 1:10^5
# l = loss(rand(10))
# back!(l)
# prev_eta = o.eta
# prev_grad = collect(w1.grad)
# delta = Optimise.apply!(o, w1.data, w1.grad)
# w1.data .-= delta
# new_eta = o.eta
# if new_eta != prev_eta
# push!(decay_steps, t)
# end
# array = fill(o.eta, size(prev_grad))
# if array .* prev_grad != delta
# flag = 0
# end
# end
# @test flag == 1
# # Test to check if decay happens at decay steps. Eta reaches clip value eventually.
# ground_truth = []
# for i in 1:11
# push!(ground_truth, 1000*i) # Expected decay steps for this example.
# end
# @test decay_steps == ground_truth
# @test o.eta == o.clip
# end
@testset "Training Loop" begin
i = 0
l = 1
Flux.train!(() -> (sleep(0.1); i += 1; l),
(),
Iterators.repeated((), 100),
Descent(),
cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1))
@test 3 < i < 50
# Test multiple callbacks
x = 0
fs = [() -> (), () -> x = 1]
cbs = runall(fs)
cbs()
@test x == 1
end
@testset "ExpDecay" begin
w = randn(10, 10)
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
w1 = randn(10,10)
loss(x) = Flux.mse(w*x, w1*x)
flag = 1
decay_steps = []
for t = 1:10^5
prev_eta = o.eta
θ = Params([w1])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
Optimise.update!(o, θ, θ̄)
new_eta = o.eta
if new_eta != prev_eta
push!(decay_steps, t)
end
# array = fill(o.eta, size(prev_grad))
# if array .* prev_grad != delta
# flag = 0
# end
end
#@test flag == 1
# Test to check if decay happens at decay steps. Eta reaches clip value eventually.
ground_truth = []
for i in 1:11
push!(ground_truth, 1000*i) # Expected decay steps for this example.
end
@test decay_steps == ground_truth
@test o.eta == o.clip
end