conv api updates

This commit is contained in:
Mike J Innes 2018-02-26 22:43:07 +00:00
parent 54919b8dca
commit 15d1d3256b
4 changed files with 53 additions and 38 deletions

View File

@ -7,7 +7,7 @@ module Flux
using Juno, Requires, Reexport
using MacroTools: @forward
export Chain, Dense, RNN, LSTM, GRU, Conv2D,
export Chain, Dense, RNN, LSTM, GRU, Conv, Conv2D,
Dropout, LayerNorm, BatchNorm,
SGD, ADAM, Momentum, Nesterov, AMSGrad,
param, params, mapleaves

View File

@ -1,6 +1,8 @@
using NNlib: conv
"""
Conv2D(size, in=>out)
Conv2d(size, in=>out, relu)
Conv(size, in=>out)
Conv(size, in=>out, relu)
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
@ -10,32 +12,37 @@ be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad` and `stride`.
"""
struct Conv2D{F,A,V}
struct Conv{N,F,A,V}
σ::F
weight::A
bias::V
stride::Int
pad::Int
stride::NTuple{N,Int}
pad::NTuple{N,Int}
end
Conv2D(w::AbstractArray{T,4}, b::AbstractVector{T}, σ = identity;
Conv(w::AbstractArray{T}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0) where T =
Conv2D(σ, w, b, stride, pad)
Conv(σ, w, b, stride, pad)
Conv2D(k::NTuple{2,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = initn, stride = 1, pad = 0) =
Conv2D(param(init(k..., ch...)), param(zeros(ch[2])), σ, stride = stride, pad = pad)
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
stride::NTuple{N,Integer} = map(_->1,k),
pad::NTuple{N,Integer} = map(_->0,k)) where N =
Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ,
stride = stride, pad = pad)
Flux.treelike(Conv2D)
Flux.treelike(Conv)
function (c::Conv2D)(x)
σ, b = c.σ, reshape(c.bias, 1, 1, :, 1)
σ.(conv2d(x, c.weight, stride = c.stride, padding = c.pad) .+ b)
function (c::Conv)(x)
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ.(conv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
end
function Base.show(io::IO, l::Conv2D)
print(io, "Conv2D((", size(l.weight, 1), ", ", size(l.weight, 2), ")")
print(io, ", ", size(l.weight, 3), "=>", size(l.weight, 4))
function Base.show(io::IO, l::Conv)
print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
# v0.5
@deprecate Conv2D(args...; kw...) Conv(args...; kw...)

View File

@ -217,7 +217,7 @@ end
# NNlib
using NNlib
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv2d, pool
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, maxpool, meanpool
softmax(xs::TrackedArray) = track(softmax, xs)
@ -228,27 +228,35 @@ logsoftmax(xs::TrackedArray) = track(logsoftmax, xs)
back(::typeof(logsoftmax), Δ, xs) = @back(xs, ∇logsoftmax(Δ, data(xs)))
# TODO: can store kwargs efficiently in namedtuples
_conv2d(x, w, stride, pad) = conv2d(x, w, stride = stride, padding = pad)
_conv(x, w, stride, pad) = conv(x, w, stride = stride, pad = pad)
conv2d(x::TrackedArray{<:Any,4}, w::TrackedArray{<:Any,4}; stride = 1, padding = 0) =
track(_conv2d, x, w, stride, padding)
conv2d(x::AbstractArray{<:Any,4}, w::TrackedArray{<:Any,4}; stride = 1, padding = 0) =
track(_conv2d, x, w, stride, padding)
conv2d(x::TrackedArray{<:Any,4}, w::AbstractArray{<:Any,4}; stride = 1, padding = 0) =
track(_conv2d, x, w, stride, padding)
conv(x::TrackedArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
track(_conv, x, w, stride, pad)
conv(x::AbstractArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
track(_conv, x, w, stride, pad)
conv(x::TrackedArray{<:Real,N}, w::AbstractArray{<:Real,N}; stride = 1, pad = 0) where N =
track(_conv, x, w, stride, pad)
function back(::typeof(_conv2d), Δ, x, w, stride, pad)
@back(x, NNlib.conv2d_grad_x(data(x), data(w), Δ; stride = stride, padding = pad))
@back(w, NNlib.conv2d_grad_w(data(x), data(w), Δ; stride = stride, padding = pad))
function back(::typeof(_conv), Δ, x, w, stride, pad)
@back(x, NNlib.∇conv_data(Δ, data(x), data(w); stride = stride, pad = pad))
@back(w, NNlib.∇conv_filter(Δ, data(x), data(w); stride = stride, pad = pad))
end
_pool(x, k, pad, mode) = pool(x, window = k, mode = mode, padding = pad)
_maxpool(x, k, pad) = maxpool(x, k; pad = pad)
pool(x::TrackedArray{<:Any,4}; window = 2, mode = 0, padding = 0) =
track(_pool, x, window, padding, mode)
maxpool(x::TrackedArray, k; pad = map(_->0,k)) =
track(_maxpool, x, k, pad)
back_(::typeof(_pool), y, Δ, x, k, pad, mode) =
back(x, NNlib.pool_grad(data(x), y, Δ, window=k, mode=mode, padding=pad))
back_(::typeof(_maxpool), y, Δ, x, k, pad) =
back(x, NNlib.∇maxpool(Δ, y, data(x), k, pad=pad))
_meanpool(x, k, pad) = meanpool(x, k; pad = pad)
meanpool(x::TrackedArray, k; pad = map(_->0,k)) =
track(_meanpool, x, k, pad)
back_(::typeof(_meanpool), y, Δ, x, k, pad) =
back(x, NNlib.∇meanpool(Δ, y, data(x), k, pad=pad))
# Broadcasting

View File

@ -1,6 +1,6 @@
using Flux.Tracker, Base.Test, NNlib
using Flux.Tracker: TrackedReal, gradcheck
using NNlib
using NNlib: conv
gradtest(f, xs::AbstractArray...) = gradcheck((xs...) -> sum(sin.(f(xs...))), xs...)
gradtest(f, dims...) = gradtest(f, rand.(dims)...)
@ -60,9 +60,9 @@ end
2y + x
end
@test gradtest(conv2d, rand(10, 10, 3, 2), randn(2, 2, 3, 2))
@test gradtest(x -> maxpool2d(x, 2), rand(10, 10, 3, 2))
@test gradtest(x -> avgpool2d(x, 2), rand(10, 10, 3, 2))
@test gradtest(conv, rand(10, 10, 3, 2), randn(2, 2, 3, 2))
@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
@test gradtest(x -> meanpool(x, (2,2)), rand(10, 10, 3, 2))
@test (param([1,2,3]) .< 2) == [true, false, false]