conv api updates
This commit is contained in:
parent
54919b8dca
commit
15d1d3256b
|
@ -7,7 +7,7 @@ module Flux
|
|||
using Juno, Requires, Reexport
|
||||
using MacroTools: @forward
|
||||
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv2D,
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv, Conv2D,
|
||||
Dropout, LayerNorm, BatchNorm,
|
||||
SGD, ADAM, Momentum, Nesterov, AMSGrad,
|
||||
param, params, mapleaves
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
using NNlib: conv
|
||||
|
||||
"""
|
||||
Conv2D(size, in=>out)
|
||||
Conv2d(size, in=>out, relu)
|
||||
Conv(size, in=>out)
|
||||
Conv(size, in=>out, relu)
|
||||
|
||||
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
|
@ -10,32 +12,37 @@ be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
|||
|
||||
Takes the keyword arguments `pad` and `stride`.
|
||||
"""
|
||||
struct Conv2D{F,A,V}
|
||||
struct Conv{N,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::Int
|
||||
pad::Int
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
end
|
||||
|
||||
Conv2D(w::AbstractArray{T,4}, b::AbstractVector{T}, σ = identity;
|
||||
Conv(w::AbstractArray{T}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0) where T =
|
||||
Conv2D(σ, w, b, stride, pad)
|
||||
Conv(σ, w, b, stride, pad)
|
||||
|
||||
Conv2D(k::NTuple{2,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = initn, stride = 1, pad = 0) =
|
||||
Conv2D(param(init(k..., ch...)), param(zeros(ch[2])), σ, stride = stride, pad = pad)
|
||||
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
|
||||
stride::NTuple{N,Integer} = map(_->1,k),
|
||||
pad::NTuple{N,Integer} = map(_->0,k)) where N =
|
||||
Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ,
|
||||
stride = stride, pad = pad)
|
||||
|
||||
Flux.treelike(Conv2D)
|
||||
Flux.treelike(Conv)
|
||||
|
||||
function (c::Conv2D)(x)
|
||||
σ, b = c.σ, reshape(c.bias, 1, 1, :, 1)
|
||||
σ.(conv2d(x, c.weight, stride = c.stride, padding = c.pad) .+ b)
|
||||
function (c::Conv)(x)
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(conv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::Conv2D)
|
||||
print(io, "Conv2D((", size(l.weight, 1), ", ", size(l.weight, 2), ")")
|
||||
print(io, ", ", size(l.weight, 3), "=>", size(l.weight, 4))
|
||||
function Base.show(io::IO, l::Conv)
|
||||
print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
|
||||
l.σ == identity || print(io, ", ", l.σ)
|
||||
print(io, ")")
|
||||
end
|
||||
|
||||
# v0.5
|
||||
@deprecate Conv2D(args...; kw...) Conv(args...; kw...)
|
||||
|
|
|
@ -217,7 +217,7 @@ end
|
|||
# NNlib
|
||||
|
||||
using NNlib
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv2d, pool
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, maxpool, meanpool
|
||||
|
||||
softmax(xs::TrackedArray) = track(softmax, xs)
|
||||
|
||||
|
@ -228,27 +228,35 @@ logsoftmax(xs::TrackedArray) = track(logsoftmax, xs)
|
|||
back(::typeof(logsoftmax), Δ, xs) = @back(xs, ∇logsoftmax(Δ, data(xs)))
|
||||
|
||||
# TODO: can store kwargs efficiently in namedtuples
|
||||
_conv2d(x, w, stride, pad) = conv2d(x, w, stride = stride, padding = pad)
|
||||
_conv(x, w, stride, pad) = conv(x, w, stride = stride, pad = pad)
|
||||
|
||||
conv2d(x::TrackedArray{<:Any,4}, w::TrackedArray{<:Any,4}; stride = 1, padding = 0) =
|
||||
track(_conv2d, x, w, stride, padding)
|
||||
conv2d(x::AbstractArray{<:Any,4}, w::TrackedArray{<:Any,4}; stride = 1, padding = 0) =
|
||||
track(_conv2d, x, w, stride, padding)
|
||||
conv2d(x::TrackedArray{<:Any,4}, w::AbstractArray{<:Any,4}; stride = 1, padding = 0) =
|
||||
track(_conv2d, x, w, stride, padding)
|
||||
conv(x::TrackedArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
|
||||
track(_conv, x, w, stride, pad)
|
||||
conv(x::AbstractArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
|
||||
track(_conv, x, w, stride, pad)
|
||||
conv(x::TrackedArray{<:Real,N}, w::AbstractArray{<:Real,N}; stride = 1, pad = 0) where N =
|
||||
track(_conv, x, w, stride, pad)
|
||||
|
||||
function back(::typeof(_conv2d), Δ, x, w, stride, pad)
|
||||
@back(x, NNlib.conv2d_grad_x(data(x), data(w), Δ; stride = stride, padding = pad))
|
||||
@back(w, NNlib.conv2d_grad_w(data(x), data(w), Δ; stride = stride, padding = pad))
|
||||
function back(::typeof(_conv), Δ, x, w, stride, pad)
|
||||
@back(x, NNlib.∇conv_data(Δ, data(x), data(w); stride = stride, pad = pad))
|
||||
@back(w, NNlib.∇conv_filter(Δ, data(x), data(w); stride = stride, pad = pad))
|
||||
end
|
||||
|
||||
_pool(x, k, pad, mode) = pool(x, window = k, mode = mode, padding = pad)
|
||||
_maxpool(x, k, pad) = maxpool(x, k; pad = pad)
|
||||
|
||||
pool(x::TrackedArray{<:Any,4}; window = 2, mode = 0, padding = 0) =
|
||||
track(_pool, x, window, padding, mode)
|
||||
maxpool(x::TrackedArray, k; pad = map(_->0,k)) =
|
||||
track(_maxpool, x, k, pad)
|
||||
|
||||
back_(::typeof(_pool), y, Δ, x, k, pad, mode) =
|
||||
back(x, NNlib.pool_grad(data(x), y, Δ, window=k, mode=mode, padding=pad))
|
||||
back_(::typeof(_maxpool), y, Δ, x, k, pad) =
|
||||
back(x, NNlib.∇maxpool(Δ, y, data(x), k, pad=pad))
|
||||
|
||||
_meanpool(x, k, pad) = meanpool(x, k; pad = pad)
|
||||
|
||||
meanpool(x::TrackedArray, k; pad = map(_->0,k)) =
|
||||
track(_meanpool, x, k, pad)
|
||||
|
||||
back_(::typeof(_meanpool), y, Δ, x, k, pad) =
|
||||
back(x, NNlib.∇meanpool(Δ, y, data(x), k, pad=pad))
|
||||
|
||||
# Broadcasting
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
using Flux.Tracker, Base.Test, NNlib
|
||||
using Flux.Tracker: TrackedReal, gradcheck
|
||||
using NNlib
|
||||
using NNlib: conv
|
||||
|
||||
gradtest(f, xs::AbstractArray...) = gradcheck((xs...) -> sum(sin.(f(xs...))), xs...)
|
||||
gradtest(f, dims...) = gradtest(f, rand.(dims)...)
|
||||
|
@ -60,9 +60,9 @@ end
|
|||
2y + x
|
||||
end
|
||||
|
||||
@test gradtest(conv2d, rand(10, 10, 3, 2), randn(2, 2, 3, 2))
|
||||
@test gradtest(x -> maxpool2d(x, 2), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> avgpool2d(x, 2), rand(10, 10, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 3, 2), randn(2, 2, 3, 2))
|
||||
@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> meanpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
|
||||
@test (param([1,2,3]) .< 2) == [true, false, false]
|
||||
|
||||
|
|
Loading…
Reference in New Issue