handle state in training
This commit is contained in:
parent
605e3a9363
commit
1761e43bc4
@ -44,15 +44,17 @@ end
|
|||||||
function Flux.train!(m::SeqModel, train; epoch = 1, η = 0.1,
|
function Flux.train!(m::SeqModel, train; epoch = 1, η = 0.1,
|
||||||
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
||||||
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
||||||
|
state = batchone.(m.m.model.state)
|
||||||
Y = placeholder(Float32)
|
Y = placeholder(Float32)
|
||||||
Loss = loss(m.m.output[end], Y)
|
Loss = loss(m.m.output[end], Y)
|
||||||
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
||||||
for e in 1:epoch
|
for e in 1:epoch
|
||||||
info("Epoch $e\n")
|
info("Epoch $e\n")
|
||||||
@progress for (x, y) in train
|
@progress for (x, y) in train
|
||||||
y, cur_loss, _ = run(m.m.session, vcat(m.m.output[end], Loss, minimize_op),
|
out = run(m.m.session, vcat(m.m.output..., Loss, minimize_op),
|
||||||
merge(Dict(m.m.inputs[end]=>x, Y=>y),
|
merge(Dict(m.m.inputs[end]=>batchone(x), Y=>batchone(y)),
|
||||||
Dict(zip(m.m.inputs[1:end-1], m.state))))
|
Dict(zip(m.m.inputs[1:end-1], state))))
|
||||||
|
state = out[1:length(state)]
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user