fix cpu batchnorm
This commit is contained in:
parent
a0fd91b866
commit
185e9148b6
|
@ -96,56 +96,58 @@ m = Chain(
|
|||
softmax)
|
||||
```
|
||||
"""
|
||||
mutable struct BatchNorm{F,V,W,N}
|
||||
λ::F # activation function
|
||||
β::V # bias
|
||||
γ::V # scale
|
||||
μ::W # moving mean
|
||||
σ::W # moving std
|
||||
ϵ::N
|
||||
momentum::N
|
||||
mutable struct BatchNorm
|
||||
λ # activation function
|
||||
β # bias
|
||||
γ # scale
|
||||
μ # moving mean
|
||||
σ² # moving var
|
||||
ϵ
|
||||
momentum
|
||||
active::Bool
|
||||
end
|
||||
|
||||
BatchNorm(chs::Integer, λ = identity;
|
||||
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1) =
|
||||
function BatchNorm(chs::Integer, λ = identity;
|
||||
initβ = x->zeros(Float32,x),
|
||||
initγ = x->ones(Float32,x),
|
||||
ϵ = 1f-8,
|
||||
momentum = 0.1f0)
|
||||
BatchNorm(λ, param(initβ(chs)), param(initγ(chs)),
|
||||
zeros(chs), ones(chs), ϵ, momentum, true)
|
||||
zeros(Float32, chs), ones(Float32, chs), ϵ, momentum, true)
|
||||
end
|
||||
|
||||
function (BN::BatchNorm)(x)
|
||||
size(x, ndims(x)-1) == length(BN.β) ||
|
||||
error("BatchNorm expected $(length(BN.β)) channels, got $(size(x, ndims(x)-1))")
|
||||
γ, β = BN.γ, BN.β
|
||||
dims = length(size(x))
|
||||
channels = size(x, dims-1)
|
||||
dims = ndims(x)
|
||||
affine_shape = ones(Int, dims)
|
||||
affine_shape[end-1] = channels
|
||||
m = prod(size(x)[1:end-2]) * size(x)[end]
|
||||
affine_shape[end-1] = size(x, dims-1)
|
||||
T = eltype(x)
|
||||
|
||||
if !BN.active
|
||||
μ = reshape(BN.μ, affine_shape...)
|
||||
σ = reshape(BN.σ, affine_shape...)
|
||||
σ² = reshape(BN.σ², affine_shape...)
|
||||
else
|
||||
T = eltype(x)
|
||||
|
||||
ϵ = data(convert(T, BN.ϵ))
|
||||
axes = [1:dims-2; dims] # axes to reduce along (all but channels axis)
|
||||
m = prod(size(x, axes...))
|
||||
μ = mean(x, axes)
|
||||
σ = sqrt.(mean((x .- μ).^2, axes) .+ ϵ)
|
||||
σ² = sum((x.-μ).^2, axes) ./ m
|
||||
|
||||
# update moving mean/std
|
||||
mtm = data(convert(T, BN.momentum))
|
||||
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), (axes...))
|
||||
BN.σ = (1 - mtm) .* BN.σ .+ mtm .* squeeze(data(σ), (axes...)) .* m ./ (m - 1)
|
||||
mtm = convert(T, BN.momentum)
|
||||
|
||||
BN.μ = ((1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), (axes...))) |> data
|
||||
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* squeeze(data(σ²), (axes...))*m/(m-1)) |> data
|
||||
end
|
||||
|
||||
let λ = BN.λ
|
||||
λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ σ) .+ reshape(β, affine_shape...))
|
||||
end
|
||||
ϵ = convert(T, BN.ϵ)
|
||||
BN.λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ sqrt.(σ² .+ ϵ)) .+ reshape(β, affine_shape...))
|
||||
end
|
||||
|
||||
children(BN::BatchNorm) =
|
||||
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ, BN.ϵ, BN.momentum, BN.active)
|
||||
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ², BN.ϵ, BN.momentum, BN.active)
|
||||
|
||||
mapchildren(f, BN::BatchNorm) = # e.g. mapchildren(cu, BN)
|
||||
BatchNorm(BN.λ, f(BN.β), f(BN.γ), f(BN.μ), f(BN.σ), BN.ϵ, BN.momentum, BN.active)
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
using Flux: testmode!
|
||||
using Flux.Tracker: data
|
||||
|
||||
@testset "Dropout" begin
|
||||
x = [1.,2.,3.]
|
||||
|
@ -28,7 +29,8 @@ using Flux: testmode!
|
|||
end
|
||||
|
||||
@testset "BatchNorm" begin
|
||||
let m = BatchNorm(2), x = param([1 2; 3 4; 5 6]')
|
||||
let m = BatchNorm(2), x = param([1 3 5;
|
||||
2 4 6])
|
||||
|
||||
@test m.β.data == [0, 0] # initβ(2)
|
||||
@test m.γ.data == [1, 1] # initγ(2)
|
||||
|
@ -53,29 +55,26 @@ end
|
|||
# .1 * 4 + 0 = .4
|
||||
@test m.μ ≈ reshape([0.3, 0.4], 2, 1)
|
||||
|
||||
# julia> .1 .* std(x, 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
|
||||
# 2×1 Array{Float64,2}:
|
||||
# 1.14495
|
||||
# 1.14495
|
||||
@test m.σ ≈ .1 .* std(x.data, 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
|
||||
@test m.σ² ≈ 0.1 .* var(x.data, 2, corrected=false)*3/2 + 0.9 .* [1., 1.]
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
x′ = m(x).data
|
||||
@test x′[1] ≈ (1 - 0.3) / 1.1449489742783179
|
||||
y = m(x).data
|
||||
@test y ≈ data((x .- m.μ) ./ sqrt.(m.σ² .+ m.ϵ))
|
||||
end
|
||||
|
||||
# with activation function
|
||||
let m = BatchNorm(2, σ), x = param([1 2; 3 4; 5 6]')
|
||||
let m = BatchNorm(2, sigmoid), x = param([1 3 5;
|
||||
2 4 6])
|
||||
@test m.active
|
||||
m(x)
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
x′ = m(x).data
|
||||
@test x′[1] ≈ σ((1 - 0.3) / 1.1449489742783179)
|
||||
y = m(x).data
|
||||
@test y ≈ data(sigmoid.((x .- m.μ) ./ sqrt.(m.σ² .+ m.ϵ)))
|
||||
end
|
||||
|
||||
let m = BatchNorm(2), x = param(reshape(1:6, 3, 2, 1))
|
||||
|
@ -85,7 +84,7 @@ end
|
|||
end
|
||||
|
||||
let m = BatchNorm(2), x = param(reshape(1:12, 2, 3, 2, 1))
|
||||
y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
|
||||
y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
|
||||
y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4])
|
||||
@test m(x) == y
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue