Merge branch 'master' into HEAD

This commit is contained in:
Mike J Innes 2017-12-08 18:31:55 +00:00
commit 1d916c81b5
11 changed files with 132 additions and 72 deletions

View File

@ -8,11 +8,11 @@ using Juno, Requires
using Lazy: @forward using Lazy: @forward
export Chain, Dense, RNN, LSTM, GRU, Dropout, LayerNorm, export Chain, Dense, RNN, LSTM, GRU, Dropout, LayerNorm,
SGD, ADAM, Momentum, Nesterov, SGD, ADAM, Momentum, Nesterov, AMSGrad,
param, params, mapleaves param, params, mapleaves
using NNlib using NNlib
export σ, relu, leakyrelu, elu, swish, softmax export σ, sigmoid, relu, leakyrelu, elu, swish, softmax
include("tracker/Tracker.jl") include("tracker/Tracker.jl")
using .Tracker using .Tracker

View File

@ -33,7 +33,7 @@ function rawdict()
filter(!isempty, split.(split(readstring(deps("CMUDict", "cmudict")), "\n")))) filter(!isempty, split.(split(readstring(deps("CMUDict", "cmudict")), "\n"))))
end end
validword(s) = ismatch(r"^[\w-\.]+$", s) validword(s) = ismatch(r"^[\w\-\.]+$", s)
cmudict() = filter((s, ps) -> validword(s), rawdict()) cmudict() = filter((s, ps) -> validword(s), rawdict())

View File

@ -151,9 +151,6 @@ for a good overview of the internals.
""" """
LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...)) LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...))
# GRU # GRU
struct GRUCell{D1,D2,V} struct GRUCell{D1,D2,V}

View File

@ -1,15 +1,17 @@
using NNlib: log_fast
# Cost functions # Cost functions
mse(, y) = sum(( .- y).^2)/length(y) mse(, y) = sum(( .- y).^2)/length(y)
crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat) = crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat) =
-sum(y .* log.()) / size(y, 2) -sum(y .* log_fast.()) / size(y, 2)
@deprecate logloss(x, y) crossentropy(x, y) @deprecate logloss(x, y) crossentropy(x, y)
function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat) function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat)
logŷ = logŷ .- maximum(logŷ, 1) logŷ = logŷ .- maximum(logŷ, 1)
ypred = logŷ .- log.(sum(exp.(logŷ), 1)) ypred = logŷ .- log_fast.(sum(exp.(logŷ), 1))
-sum(y .* ypred) / size(y, 2) -sum(y .* ypred) / size(y, 2)
end end

View File

@ -42,7 +42,14 @@ function onehot(l, labels)
OneHotVector(i, length(labels)) OneHotVector(i, length(labels))
end end
onehotbatch(ls, labels) = OneHotMatrix(length(labels), [onehot(l, labels) for l in ls]) function onehot(l, labels, unk)
i = findfirst(labels, l)
i > 0 || return onehot(unk, labels)
OneHotVector(i, length(labels))
end
onehotbatch(ls, labels, unk...) =
OneHotMatrix(length(labels), [onehot(l, labels, unk...) for l in ls])
argmax(y::AbstractVector, labels = 1:length(y)) = argmax(y::AbstractVector, labels = 1:length(y)) =
labels[findfirst(y, maximum(y))] labels[findfirst(y, maximum(y))]

View File

@ -1,7 +1,7 @@
module Optimise module Optimise
export update!, params, train!, export update!, params, train!,
SGD, ADAM, Momentum, Nesterov, RMSProp, ADAGrad, ADADelta SGD, ADAM, Momentum, Nesterov, RMSProp, ADAGrad, ADADelta, AMSGrad
struct Param{T} struct Param{T}
x::T x::T

View File

@ -1,5 +1,7 @@
call(f, xs...) = f(xs...) call(f, xs...) = f(xs...)
# note for optimisers: set to zero
# p.Δ at the end of the weigths update
function optimiser(ps, fs...) function optimiser(ps, fs...)
ps = [Param(p) for p in ps] ps = [Param(p) for p in ps]
fs = map(ps) do p fs = map(ps) do p
@ -10,64 +12,73 @@ function optimiser(ps, fs...)
end end
""" """
SGD(params, η = 1; decay = 0) SGD(params, η = 0.1; decay = 0)
Classic gradient descent optimiser. For each parameter `p` and its Classic gradient descent optimiser with learning rate `η`.
gradient `δp`, this runs `p -= η*δp`. For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`.
Supports decayed learning rate decay if the `decay` argument is provided. Supports inverse decaying learning rate if the `decay` argument is provided.
""" """
SGD(ps, η = 1; decay = 0) = SGD(ps, η = 0.1; decay = 0) =
optimiser(ps, p -> invdecay(p, decay), p -> descent(p, η)) optimiser(ps, p -> invdecay(p, decay), p -> descent(p,η))
""" """
Momentum(params, ρ, decay = 0) Momentum(params, η = 0.01; ρ = 0.9, decay = 0)
SGD with momentum `ρ` and optional learning rate decay. SGD with learning rate `η`, momentum `ρ` and optional learning rate inverse decay.
""" """
Momentum(ps, ρ; decay = 0) = Momentum(ps, η = 0.01; ρ = 0.9, decay = 0) =
optimiser(ps, p -> momentum(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1)) optimiser(ps, p->invdecay(p,decay), p->momentum(p, ρ, η), p->descent(p,1))
""" """
Nesterov(params, ρ, decay = 0) Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)
SGD with Nesterov momentum `ρ` and optional learning rate decay. SGD with learning rate `η`, Nesterov momentum `ρ` and optional learning rate inverse decay.
""" """
Nesterov(ps, ρ; decay = 0) = Nesterov(ps, η = 0.01; ρ = 0.9, decay = 0) =
optimiser(ps, p -> nesterov(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1)) optimiser(ps, p->invdecay(p,decay), p->nesterov(p, ρ, η), p->descent(p,1))
""" """
RMSProp(params; η = 0.001, ρ = 0.9, ϵ = 1e-8, decay = 0) RMSProp(params, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0)
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) [RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
optimiser. Parameters other than learning rate don't need tuning. Often a good optimiser. Parameters other than learning rate don't need tuning. Often a good
choice for recurrent networks. choice for recurrent networks.
""" """
RMSProp(ps, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0) = RMSProp(ps, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0) =
optimiser(ps, p -> rmsprop(p; η = η, ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1)) optimiser(ps, p->rmsprop(p; η=η, ρ=ρ, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
""" """
ADAM(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser. [ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
""" """
ADAM(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) = ADAM(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
optimiser(ps, p -> adam(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1)) optimiser(ps, p->adam(p; η=η, β1=β1, β2=β2, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
""" """
ADAGrad(params; η = 0.01, ϵ = 1e-8, decay = 0) ADAGrad(params, η = 0.01; ϵ = 1e-8, decay = 0)
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser. [ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning. Parameters don't need tuning.
""" """
ADAGrad(ps; η = 0.01, ϵ = 1e-8, decay = 0) = ADAGrad(ps, η = 0.01; ϵ = 1e-8, decay = 0) =
optimiser(ps, p -> adagrad(p; η = η, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1)) optimiser(ps, p->adagrad(p; η=η, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
""" """
ADADelta(params; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0) ADADelta(params; ρ = 0.9, ϵ = 1e-8, decay = 0)
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need [ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
tuning. tuning.
""" """
ADADelta(ps; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0) = ADADelta(ps; ρ = 0.9, ϵ = 1e-8, decay = 0) =
optimiser(ps, p -> adadelta(p; ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1)) optimiser(ps, p->adadelta(p; ρ=ρ, ϵ=ϵ), p->descent(p,1))
"""
AMSGrad(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
tuning.
"""
AMSGrad(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
optimiser(ps, p -> amsgrad(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))

View File

@ -1,74 +1,97 @@
function descent(p::Param, η::Real) function descent(p::Param, η::Real)
function () function ()
p.x .-= p.Δ .* η @. p.x -= η * p.Δ
p.Δ .= 0 @. p.Δ = 0
end end
end end
function momentum(p::Param, ρ::Real) function momentum(p::Param, ρ, η)
mo = zeros(p.x) v = zeros(p.x)
() -> p.Δ .= mo .= ρ .* mo .+ p.Δ
end
function nesterov(p::Param, ρ::Real)
mo = zeros(p.x)
function () function ()
mo .= ρ .* mo .+ p.Δ @. v = ρ * v - η * p.Δ
p.Δ .= ρ .* mo .+ p.Δ @. p.Δ = -v
end end
end end
function clip(p::Param, thresh::Real) # Ref. https://arxiv.org/pdf/1212.0901.pdf
() -> clamp!(p.Δ, -thresh, thresh) function nesterov(p::Param, ρ, η)
end v = zeros(p.x)
function weightdecay(p::Param, γ::Real)
() -> p.Δ .+= γ .* p.x
end
function invdecay(p::Param, γ::Real)
n = 0
function () function ()
p.Δ .*= 1 / (1 + γ * n) d = @. ρ^2 * v - (1+ρ) * η * p.Δ
n += 1 @. v = ρ*v - η*p.Δ
@. p.Δ = -d
end end
end end
function rmsprop(p::Param; η::Real = 0.001, ρ::Real = 0.9, ϵ::Real = 1e-8) function rmsprop(p::Param; η::Real = 0.001, ρ::Real = 0.9, ϵ::Real = 1e-8)
acc = zeros(p.x) .+ ϵ acc = zeros(p.x)
function () function ()
@. acc = ρ * acc + (1 - ρ) * p.Δ ^ 2 @. acc = ρ * acc + (1 - ρ) * p.Δ^2
@. p.Δ *= η / acc @. p.Δ *= η / (acc + ϵ)
end end
end end
function adagrad(p::Param; η::Real = 0.01, ϵ::Real = 1e-8) function adagrad(p::Param; η::Real = 0.01, ϵ::Real = 1e-8)
acc = zeros(p.x) .+ ϵ acc = zeros(p.x) .+ ϵ
function () function ()
@. acc += p.Δ ^ 2 @. acc += p.Δ^2
@. p.Δ *= η / acc @. p.Δ *= η / acc
end end
end end
function adadelta(p::Param; ρ::Real = 0.95, ϵ::Real = 1e-8) function adadelta(p::Param; ρ::Real = 0.9, ϵ::Real = 1e-8)
acc = zeros(p.x) .+ ϵ acc = zeros(p.x)
Δacc = zeros(p.x) .+ ϵ Δacc = zeros(p.x)
function () function ()
@. acc = ρ * acc + (1 - ρ) * p.Δ ^ 2 @. acc = ρ * acc + (1 - ρ) * p.Δ^2
@. p.Δ *= Δacc / acc @. p.Δ *= (Δacc + ϵ) / (acc + ϵ)
@. Δacc = ρ * Δacc + (1 - ρ) * p.Δ ^ 2 @. Δacc = ρ * Δacc + (1 - ρ) * p.Δ^2
end end
end end
function adam(p::Param; η::Real = 0.001, β1::Real = 0.9, β2::Real = 0.999, ϵ::Real = 1e-8) function adam(p::Param; η::Real = 0.001, β1::Real = 0.9, β2::Real = 0.999, ϵ::Real = 1e-8)
mt = zeros(p.x) mt = zeros(p.x)
vt = zeros(p.x) .+ ϵ vt = zeros(p.x)
β1p, β2p = β1, β2 β1p, β2p = β1, β2
function () function ()
@. mt = β1 * mt + (1 - β1) * p.Δ @. mt = β1 * mt + (1 - β1) * p.Δ
@. vt = β2 * vt + (1 - β2) * p.Δ ^ 2 @. vt = β2 * vt + (1 - β2) * p.Δ^2
@. p.Δ = (1 - β2p) / (1 - β1p) * mt / vt * η @. p.Δ = mt / (1 - β1p) / ((vt / (1 - β2p)) + ϵ) * η
β1p *= β1 β1p *= β1
β2p *= β2 β2p *= β2
end end
end end
function amsgrad(p::Param; η::Real = 0.001, β1::Real = 0.9, β2::Real = 0.999, ϵ::Real = 1e-8)
mt = zeros(p.x)
vt = zeros(p.x) .+ ϵ
v̂t = zeros(p.x) .+ ϵ
function ()
@. mt = β1 * mt + (1 - β1) * p.Δ
@. vt = β2 * vt + (1 - β2) * p.Δ ^ 2
@. v̂t = max.(v̂t, vt)
@. p.Δ = η * mt / v̂t
end
end
clip(p::Param, thresh::Real) = () -> clamp!(p.Δ, -thresh, thresh)
function expdecay(p::Param, γ::Real)
if γ != 0
return () -> p.Δ .+= γ .* p.x
else
return () -> nothing
end
end
function invdecay(p::Param, γ::Real)
if γ != 0
n = 0
return () -> begin
p.Δ .*= 1 / (1 + γ * n)
n += 1
end
else
return () -> nothing
end
end

View File

@ -40,7 +40,7 @@ TrackedArray(x::AbstractArray) = TrackedArray(Call(nothing), x, zeros(x))
isleaf(x::TrackedArray) = x.f == Call(nothing) isleaf(x::TrackedArray) = x.f == Call(nothing)
param(xs) = TrackedArray(AbstractFloat.(xs)) param(xs) = TrackedArray(map(x -> AbstractFloat(x), xs))
param(xs::Real) = param(fill(xs)) param(xs::Real) = param(fill(xs))
istracked(x::TrackedArray) = true istracked(x::TrackedArray) = true
@ -58,6 +58,7 @@ Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) =
Base.similar(x::TrackedArray, T::Type) = similar(data(x), T) Base.similar(x::TrackedArray, T::Type) = similar(data(x), T)
# TODO decide if keeping both data and value. The problem is TrackedScalar
value(x) = x value(x) = x
value(x::TrackedArray) = data(x) value(x::TrackedArray) = data(x)
value(x::TrackedScalar) = data(x)[] value(x::TrackedScalar) = data(x)[]
@ -69,6 +70,7 @@ Base.:(==)(x::TrackedArray, y::TrackedArray) = value(x) == value(x)
Base.isless(x::TrackedScalar, y) = isless(value(x), y) Base.isless(x::TrackedScalar, y) = isless(value(x), y)
Base.isless(x, y::TrackedScalar) = isless(x, value(y)) Base.isless(x, y::TrackedScalar) = isless(x, value(y))
Base.isless(x::TrackedScalar, y::TrackedScalar) = isless(value(x), value(y)) Base.isless(x::TrackedScalar, y::TrackedScalar) = isless(value(x), value(y))
Base.isapprox(x::TrackedScalar, y; kws...) = isapprox(x.data[], y; kws...)
Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} = Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} =
print(io, "TrackedArray{…,$A}") print(io, "TrackedArray{…,$A}")

17
test/optimise.jl Normal file
View File

@ -0,0 +1,17 @@
using Flux.Optimise
using Flux.Tracker
@testset "Optimise" begin
w = randn(10, 10)
for Opt in [SGD, Nesterov, Momentum, ADAM, RMSProp, ps -> ADAGrad(ps, 0.1), ADADelta, AMSGrad]
w = param(randn(10, 10))
loss(x) = Flux.mse(w*x, w*x)
opt = Opt([w])
for t=1:10^5
l = loss(rand(10))
back!(l)
opt()
end
@test Flux.mse(w, w) < 0.01
end
end

View File

@ -5,5 +5,6 @@ using Flux, Base.Test
include("utils.jl") include("utils.jl")
include("tracker.jl") include("tracker.jl")
include("layers/normalisation.jl") include("layers/normalisation.jl")
include("optimise.jl")
end end