use `expand`

This commit is contained in:
Mike J Innes 2018-09-04 14:30:02 +01:00
parent e6be639436
commit 1e0fd07b09
3 changed files with 15 additions and 30 deletions

View File

@ -5,7 +5,7 @@ module Flux
using MacroTools, Juno, Requires, Reexport, Statistics, Random
using MacroTools: @forward
export Chain, Dense, RNN, LSTM, GRU, Conv,
export Chain, Dense, RNN, LSTM, GRU, Conv, MaxPool, MeanPool,
Dropout, LayerNorm, BatchNorm,
params, mapleaves, cpu, gpu

View File

@ -1,6 +1,6 @@
using NNlib: conv
@generated sub2(::Type{Val{N}}) where N = :(Val($(N-2)))
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)
@ -28,7 +28,7 @@ end
Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N} =
Conv(σ, w, b, expand.(sub2(Val{N}), (stride, pad, dilation))...)
Conv(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
stride = 1, pad = 0, dilation = 1) where N =
@ -55,7 +55,7 @@ end
"""
MaxPool(k)
Maxpooling layer. `k` stands for the size of the window for each dimension of the input.
Max pooling layer. `k` stands for the size of the window for each dimension of the input.
Takes the keyword arguments `pad` and `stride`.
"""
@ -63,25 +63,21 @@ struct MaxPool{N}
k::NTuple{N,Int}
pad::NTuple{N,Int}
stride::NTuple{N,Int}
MaxPool(k::NTuple{N,Int}; pad = map(_->0,k), stride = k) where N = new{N}(k, pad, stride)
end
function MaxPool{N}(k::Int; pad = 0, stride = k) where N
k_ = Tuple(repeat([k, ], N))
MaxPool(k_; pad = map(_->pad,k_), stride=map(_->stride,k_))
end
MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
MaxPool(k, expand(Val(N), pad), expand(Val(N), stride))
(m::MaxPool)(x) = maxpool(x, m.k; pad = m.pad, stride = m.stride)
function Base.show(io::IO, m::MaxPool)
print(io, "MaxPool(", m.k, ", ", m.pad, ", ", m.stride, ")")
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end
"""
MeanPool(k)
Meanpooling layer. `k` stands for the size of the window for each dimension of the input.
Mean pooling layer. `k` stands for the size of the window for each dimension of the input.
Takes the keyword arguments `pad` and `stride`.
"""
@ -89,16 +85,13 @@ struct MeanPool{N}
k::NTuple{N,Int}
pad::NTuple{N,Int}
stride::NTuple{N,Int}
MeanPool(k::NTuple{N,Int}; pad = map(_->0,k), stride = k) where N = new{N}(k, pad, stride)
end
function MeanPool{N}(k::Int; pad = 0, stride = k) where N
k_ = Tuple(repeat([k, ], N))
MeanPool(k_; pad = map(_->pad,k_), stride=map(_->stride,k_))
end
MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
MeanPool(k, expand(Val(N), pad), expand(Val(N), stride))
(m::MeanPool)(x) = meanpool(x, m.k; pad = m.pad, stride = m.stride)
function Base.show(io::IO, m::MeanPool)
print(io, "MeanPool(", m.k, ", ", m.pad, ", ", m.stride, ")")
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end

View File

@ -1,21 +1,13 @@
using Test
using Flux: Chain, Conv, MaxPool, MeanPool
using Flux: Chain, Conv, MaxPool, MeanPool, maxpool, meanpool
using Base.conv
@testset "pooling" begin
x = randn(10, 10, 3, 2)
mp = MaxPool((2, 2))
@testset "maxpooling" begin
@test MaxPool{2}(2) == mp
@test MaxPool{2}(2; pad=1, stride=3) == MaxPool((2, 2); pad=(1, 1), stride=(3, 3))
end
@test mp(x) == maxpool(x, (2,2))
mp = MeanPool((2, 2))
@testset "meanpooling" begin
@test MeanPool{2}(2) == mp
@test MeanPool{2}(2; pad=1, stride=3) == MeanPool((2, 2); pad=(1, 1), stride=(3, 3))
end
@test mp(x) == meanpool(x, (2,2))
end
@testset "cnn" begin