diff --git a/src/layers/conv.jl b/src/layers/conv.jl index a8ab158f..2a5ab981 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -21,7 +21,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches). In other words, a 100×100 RGB image would be a `100×100×3×1` array, and a batch of 50 would be a `100×100×3×50` array. -Takes the keyword arguments `pad`, `stride` and `dilation`. +Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`. """ struct Conv{N,M,F,A,V} σ::F @@ -81,7 +81,7 @@ Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`. Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array. -Takes the keyword arguments `pad`, `stride` and `dilation`. +Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`. """ struct ConvTranspose{N,M,F,A,V} σ::F @@ -154,7 +154,7 @@ Note that `out` must be an integer multiple of `in`. Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array. -Takes the keyword arguments `pad`, `stride` and `dilation`. +Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`. """ struct DepthwiseConv{N,M,F,A,V} σ::F @@ -228,7 +228,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches). In other words, a 100×100 RGB image would be a `100×100×3×1` array, and a batch of 50 would be a `100×100×3×50` array. -Takes the keyword arguments `pad`, `stride` and `dilation`. +Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`. """ struct CrossCor{N,M,F,A,V} σ::F