added crosscor
This commit is contained in:
parent
e991228047
commit
20b79e0bdf
1
NEWS.md
1
NEWS.md
|
@ -13,6 +13,7 @@
|
|||
* [Data.Iris](https://github.com/FluxML/Flux.jl/pull/652) makes Fisher's Iris dataset available with `Iris.labels` and `Iris.features`.
|
||||
* New [InstanceNorm](https://github.com/FluxML/Flux.jl/pull/634), as popularized by [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
|
||||
* New [GroupNorm](https://github.com/FluxML/Flux.jl/pull/696), as described in [Group Normalization](https://arxiv.org/abs/1803.08494).
|
||||
* New [CrossCor](https://github.com/FluxML/Flux.jl/pull/762).
|
||||
|
||||
AD Changes:
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ using Base: tail
|
|||
using MacroTools, Juno, Requires, Reexport, Statistics, Random
|
||||
using MacroTools: @forward
|
||||
|
||||
export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
|
||||
export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, CrossCor, ConvTranspose, MaxPool, MeanPool,
|
||||
DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm,
|
||||
params, mapleaves, cpu, gpu, f32, f64
|
||||
|
||||
|
|
|
@ -198,6 +198,76 @@ end
|
|||
|
||||
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
"""
|
||||
CrossCor(size, in=>out)
|
||||
CrossCor(size, in=>out, relu)
|
||||
|
||||
Standard cross convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
|
||||
Example: Applying CrossCor layer to a 1-channel input using a 2x2 window size,
|
||||
giving us a 16-channel output. Output is activated with ReLU.
|
||||
|
||||
size = (2,2)
|
||||
in = 1
|
||||
out = 16
|
||||
CrossCor((2, 2), 1=>16, relu)
|
||||
|
||||
Data should be stored in WHCN order (width, height, # channels, # batches).
|
||||
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
|
||||
and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct CrossCor{N,M,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return CrossCor(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||||
CrossCor(param(init(k..., ch...)), param(zeros(ch[2])), σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
|
||||
@treelike CrossCor
|
||||
|
||||
function crosscor(x, w, ddims::DenseConvDims)
|
||||
ddims = DenseConvDims(ddims, F=true)
|
||||
return conv(x, w, ddims)
|
||||
end
|
||||
|
||||
function (c::CrossCor)(x::AbstractArray)
|
||||
# TODO: breaks gpu broadcast :(
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
σ.(crosscor(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::CrossCor)
|
||||
print(io, "CrossCor(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
|
||||
l.σ == identity || print(io, ", ", l.σ)
|
||||
print(io, ")")
|
||||
end
|
||||
|
||||
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
|
||||
"""
|
||||
MaxPool(k)
|
||||
|
|
|
@ -36,6 +36,10 @@ c = gpu(Conv((2,2),3=>4))
|
|||
l = c(gpu(rand(10,10,3,2)))
|
||||
Flux.back!(sum(l))
|
||||
|
||||
c = gpu(CrossCor((2,2),3=>4))
|
||||
l = c(gpu(rand(10,10,3,2)))
|
||||
Flux.back!(sum(l))
|
||||
|
||||
end
|
||||
|
||||
@testset "onecold gpu" begin
|
||||
|
|
|
@ -61,3 +61,24 @@ end
|
|||
x_hat = ConvTranspose((3, 3), 1 => 1)(y)
|
||||
@test size(x_hat) == size(x)
|
||||
end
|
||||
|
||||
@testset "CrossCor" begin
|
||||
x = rand(Float32, 28, 28, 1, 1)
|
||||
w = rand(2,2,1,1)
|
||||
y = CrossCor(w, [0.0])
|
||||
x_pred = y(x)
|
||||
|
||||
@test sum(w .* x[1:2, 1:2, :, :]) == x_pred[1, 1, 1, 1]
|
||||
|
||||
r = zeros(Float32, 28, 28, 1, 5)
|
||||
m = Chain(
|
||||
CrossCor((2, 2), 1=>16, relu),
|
||||
MaxPool((2,2)),
|
||||
CrossCor((2, 2), 16=>8, relu),
|
||||
MaxPool((2,2)),
|
||||
x -> reshape(x, :, size(x, 4)),
|
||||
Dense(288, 10), softmax)
|
||||
|
||||
@test size(m(r)) == (10, 5)
|
||||
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue