Merge branch 'master' into amsgrad
This commit is contained in:
commit
24a6569589
@ -12,7 +12,7 @@ export Chain, Dense, RNN, LSTM, Dropout, LayerNorm,
|
||||
param, params, mapleaves
|
||||
|
||||
using NNlib
|
||||
export σ, relu, leakyrelu, elu, swish, softmax
|
||||
export σ, sigmoid, relu, leakyrelu, elu, swish, softmax
|
||||
|
||||
include("tracker/Tracker.jl")
|
||||
using .Tracker
|
||||
|
@ -33,7 +33,7 @@ function rawdict()
|
||||
filter(!isempty, split.(split(readstring(deps("CMUDict", "cmudict")), "\n"))))
|
||||
end
|
||||
|
||||
validword(s) = ismatch(r"^[\w-\.]+$", s)
|
||||
validword(s) = ismatch(r"^[\w\-\.]+$", s)
|
||||
|
||||
cmudict() = filter((s, ps) -> validword(s), rawdict())
|
||||
|
||||
|
@ -1,15 +1,17 @@
|
||||
using NNlib: log_fast
|
||||
|
||||
# Cost functions
|
||||
|
||||
mse(ŷ, y) = sum((ŷ .- y).^2)/length(y)
|
||||
|
||||
crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat) =
|
||||
-sum(y .* log.(ŷ)) / size(y, 2)
|
||||
-sum(y .* log_fast.(ŷ)) / size(y, 2)
|
||||
|
||||
@deprecate logloss(x, y) crossentropy(x, y)
|
||||
|
||||
function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat)
|
||||
logŷ = logŷ .- maximum(logŷ, 1)
|
||||
ypred = logŷ .- log.(sum(exp.(logŷ), 1))
|
||||
ypred = logŷ .- log_fast.(sum(exp.(logŷ), 1))
|
||||
-sum(y .* ypred) / size(y, 2)
|
||||
end
|
||||
|
||||
|
@ -42,7 +42,14 @@ function onehot(l, labels)
|
||||
OneHotVector(i, length(labels))
|
||||
end
|
||||
|
||||
onehotbatch(ls, labels) = OneHotMatrix(length(labels), [onehot(l, labels) for l in ls])
|
||||
function onehot(l, labels, unk)
|
||||
i = findfirst(labels, l)
|
||||
i > 0 || return onehot(unk, labels)
|
||||
OneHotVector(i, length(labels))
|
||||
end
|
||||
|
||||
onehotbatch(ls, labels, unk...) =
|
||||
OneHotMatrix(length(labels), [onehot(l, labels, unk...) for l in ls])
|
||||
|
||||
argmax(y::AbstractVector, labels = 1:length(y)) =
|
||||
labels[findfirst(y, maximum(y))]
|
||||
|
@ -1,5 +1,7 @@
|
||||
call(f, xs...) = f(xs...)
|
||||
|
||||
# note for optimisers: set to zero
|
||||
# p.Δ at the end of the weigths update
|
||||
function optimiser(ps, fs...)
|
||||
ps = [Param(p) for p in ps]
|
||||
fs = map(ps) do p
|
||||
@ -10,34 +12,34 @@ function optimiser(ps, fs...)
|
||||
end
|
||||
|
||||
"""
|
||||
SGD(params, η = 1; decay = 0)
|
||||
SGD(params, η = 0.1; decay = 0)
|
||||
|
||||
Classic gradient descent optimiser. For each parameter `p` and its
|
||||
gradient `δp`, this runs `p -= η*δp`.
|
||||
Classic gradient descent optimiser with learning rate `η`.
|
||||
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`.
|
||||
|
||||
Supports decayed learning rate decay if the `decay` argument is provided.
|
||||
Supports inverse decaying learning rate if the `decay` argument is provided.
|
||||
"""
|
||||
SGD(ps, η = 1; decay = 0) =
|
||||
SGD(ps, η = 0.1; decay = 0) =
|
||||
optimiser(ps, p -> invdecay(p, decay), p -> descent(p,η))
|
||||
|
||||
"""
|
||||
Momentum(params, ρ, decay = 0)
|
||||
Momentum(params, η = 0.01; ρ = 0.9, decay = 0)
|
||||
|
||||
SGD with momentum `ρ` and optional learning rate decay.
|
||||
SGD with learning rate `η`, momentum `ρ` and optional learning rate inverse decay.
|
||||
"""
|
||||
Momentum(ps, ρ; decay = 0) =
|
||||
optimiser(ps, p -> momentum(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
|
||||
Momentum(ps, η = 0.01; ρ = 0.9, decay = 0) =
|
||||
optimiser(ps, p->invdecay(p,decay), p->momentum(p, ρ, η), p->descent(p,1))
|
||||
|
||||
"""
|
||||
Nesterov(params, ρ, decay = 0)
|
||||
Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)
|
||||
|
||||
SGD with Nesterov momentum `ρ` and optional learning rate decay.
|
||||
SGD with learning rate `η`, Nesterov momentum `ρ` and optional learning rate inverse decay.
|
||||
"""
|
||||
Nesterov(ps, ρ; decay = 0) =
|
||||
optimiser(ps, p -> nesterov(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
|
||||
Nesterov(ps, η = 0.01; ρ = 0.9, decay = 0) =
|
||||
optimiser(ps, p->invdecay(p,decay), p->nesterov(p, ρ, η), p->descent(p,1))
|
||||
|
||||
"""
|
||||
RMSProp(params; η = 0.001, ρ = 0.9, ϵ = 1e-8, decay = 0)
|
||||
RMSProp(params, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0)
|
||||
|
||||
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
||||
optimiser. Parameters other than learning rate don't need tuning. Often a good
|
||||
@ -55,22 +57,22 @@ ADAM(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
|
||||
optimiser(ps, p->adam(p; η=η, β1=β1, β2=β2, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
|
||||
|
||||
"""
|
||||
ADAGrad(params; η = 0.01, ϵ = 1e-8, decay = 0)
|
||||
ADAGrad(params, η = 0.01; ϵ = 1e-8, decay = 0)
|
||||
|
||||
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
|
||||
Parameters don't need tuning.
|
||||
"""
|
||||
ADAGrad(ps; η = 0.01, ϵ = 1e-8, decay = 0) =
|
||||
ADAGrad(ps, η = 0.01; ϵ = 1e-8, decay = 0) =
|
||||
optimiser(ps, p->adagrad(p; η=η, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1))
|
||||
|
||||
"""
|
||||
ADADelta(params; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0)
|
||||
ADADelta(params; ρ = 0.9, ϵ = 1e-8, decay = 0)
|
||||
|
||||
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
||||
tuning.
|
||||
"""
|
||||
ADADelta(ps; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0) =
|
||||
optimiser(ps, p -> adadelta(p; ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
|
||||
ADADelta(ps; ρ = 0.9, ϵ = 1e-8, decay = 0) =
|
||||
optimiser(ps, p->adadelta(p; ρ=ρ, ϵ=ϵ), p->descent(p,1))
|
||||
|
||||
"""
|
||||
AMSGrad(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
|
||||
|
@ -1,44 +1,33 @@
|
||||
function descent(p::Param, η::Real)
|
||||
function ()
|
||||
p.x .-= p.Δ .* η
|
||||
p.Δ .= 0
|
||||
@. p.x -= η * p.Δ
|
||||
@. p.Δ = 0
|
||||
end
|
||||
end
|
||||
|
||||
function momentum(p::Param, ρ::Real)
|
||||
mo = zeros(p.x)
|
||||
() -> p.Δ .= mo .= ρ .* mo .+ p.Δ
|
||||
end
|
||||
|
||||
function nesterov(p::Param, ρ::Real)
|
||||
mo = zeros(p.x)
|
||||
function momentum(p::Param, ρ, η)
|
||||
v = zeros(p.x)
|
||||
function ()
|
||||
mo .= ρ .* mo .+ p.Δ
|
||||
p.Δ .= ρ .* mo .+ p.Δ
|
||||
@. v = ρ * v - η * p.Δ
|
||||
@. p.Δ = -v
|
||||
end
|
||||
end
|
||||
|
||||
function clip(p::Param, thresh::Real)
|
||||
() -> clamp!(p.Δ, -thresh, thresh)
|
||||
end
|
||||
|
||||
function weightdecay(p::Param, γ::Real)
|
||||
() -> p.Δ .+= γ .* p.x
|
||||
end
|
||||
|
||||
function invdecay(p::Param, γ::Real)
|
||||
n = 0
|
||||
# Ref. https://arxiv.org/pdf/1212.0901.pdf
|
||||
function nesterov(p::Param, ρ, η)
|
||||
v = zeros(p.x)
|
||||
function ()
|
||||
p.Δ .*= 1 / (1 + γ * n)
|
||||
n += 1
|
||||
d = @. ρ^2 * v - (1+ρ) * η * p.Δ
|
||||
@. v = ρ*v - η*p.Δ
|
||||
@. p.Δ = -d
|
||||
end
|
||||
end
|
||||
|
||||
function rmsprop(p::Param; η::Real = 0.001, ρ::Real = 0.9, ϵ::Real = 1e-8)
|
||||
acc = zeros(p.x) .+ ϵ
|
||||
acc = zeros(p.x)
|
||||
function ()
|
||||
@. acc = ρ * acc + (1 - ρ) * p.Δ^2
|
||||
@. p.Δ *= η / √acc
|
||||
@. p.Δ *= η / (√acc + ϵ)
|
||||
end
|
||||
end
|
||||
|
||||
@ -50,24 +39,24 @@ function adagrad(p::Param; η::Real = 0.01, ϵ::Real = 1e-8)
|
||||
end
|
||||
end
|
||||
|
||||
function adadelta(p::Param; ρ::Real = 0.95, ϵ::Real = 1e-8)
|
||||
acc = zeros(p.x) .+ ϵ
|
||||
Δacc = zeros(p.x) .+ ϵ
|
||||
function adadelta(p::Param; ρ::Real = 0.9, ϵ::Real = 1e-8)
|
||||
acc = zeros(p.x)
|
||||
Δacc = zeros(p.x)
|
||||
function ()
|
||||
@. acc = ρ * acc + (1 - ρ) * p.Δ^2
|
||||
@. p.Δ *= √Δacc / √acc
|
||||
@. p.Δ *= √(Δacc + ϵ) / √(acc + ϵ)
|
||||
@. Δacc = ρ * Δacc + (1 - ρ) * p.Δ^2
|
||||
end
|
||||
end
|
||||
|
||||
function adam(p::Param; η::Real = 0.001, β1::Real = 0.9, β2::Real = 0.999, ϵ::Real = 1e-8)
|
||||
mt = zeros(p.x)
|
||||
vt = zeros(p.x) .+ ϵ
|
||||
vt = zeros(p.x)
|
||||
β1p, β2p = β1, β2
|
||||
function ()
|
||||
@. mt = β1 * mt + (1 - β1) * p.Δ
|
||||
@. vt = β2 * vt + (1 - β2) * p.Δ^2
|
||||
@. p.Δ = √(1 - β2p) / (1 - β1p) * mt / √vt * η
|
||||
@. p.Δ = mt / (1 - β1p) / (√(vt / (1 - β2p)) + ϵ) * η
|
||||
β1p *= β1
|
||||
β2p *= β2
|
||||
end
|
||||
@ -84,3 +73,25 @@ function amsgrad(p::Param; η::Real = 0.001, β1::Real = 0.9, β2::Real = 0.999,
|
||||
@. p.Δ = η * mt / √v̂t
|
||||
end
|
||||
end
|
||||
|
||||
clip(p::Param, thresh::Real) = () -> clamp!(p.Δ, -thresh, thresh)
|
||||
|
||||
function expdecay(p::Param, γ::Real)
|
||||
if γ != 0
|
||||
return () -> p.Δ .+= γ .* p.x
|
||||
else
|
||||
return () -> nothing
|
||||
end
|
||||
end
|
||||
|
||||
function invdecay(p::Param, γ::Real)
|
||||
if γ != 0
|
||||
n = 0
|
||||
return () -> begin
|
||||
p.Δ .*= 1 / (1 + γ * n)
|
||||
n += 1
|
||||
end
|
||||
else
|
||||
return () -> nothing
|
||||
end
|
||||
end
|
||||
|
@ -40,7 +40,7 @@ TrackedArray(x::AbstractArray) = TrackedArray(Call(nothing), x, zeros(x))
|
||||
|
||||
isleaf(x::TrackedArray) = x.f == Call(nothing)
|
||||
|
||||
param(xs) = TrackedArray(AbstractFloat.(xs))
|
||||
param(xs) = TrackedArray(map(x -> AbstractFloat(x), xs))
|
||||
param(xs::Real) = param(fill(xs))
|
||||
|
||||
istracked(x::TrackedArray) = true
|
||||
@ -58,6 +58,7 @@ Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) =
|
||||
|
||||
Base.similar(x::TrackedArray, T::Type) = similar(data(x), T)
|
||||
|
||||
# TODO decide if keeping both data and value. The problem is TrackedScalar
|
||||
value(x) = x
|
||||
value(x::TrackedArray) = data(x)
|
||||
value(x::TrackedScalar) = data(x)[]
|
||||
@ -69,6 +70,7 @@ Base.:(==)(x::TrackedArray, y::TrackedArray) = value(x) == value(x)
|
||||
Base.isless(x::TrackedScalar, y) = isless(value(x), y)
|
||||
Base.isless(x, y::TrackedScalar) = isless(x, value(y))
|
||||
Base.isless(x::TrackedScalar, y::TrackedScalar) = isless(value(x), value(y))
|
||||
Base.isapprox(x::TrackedScalar, y; kws...) = isapprox(x.data[], y; kws...)
|
||||
|
||||
Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} =
|
||||
print(io, "TrackedArray{…,$A}")
|
||||
|
17
test/optimise.jl
Normal file
17
test/optimise.jl
Normal file
@ -0,0 +1,17 @@
|
||||
using Flux.Optimise
|
||||
using Flux.Tracker
|
||||
|
||||
@testset "Optimise" begin
|
||||
w = randn(10, 10)
|
||||
for Opt in [SGD, Nesterov, Momentum, ADAM, RMSProp, ps -> ADAGrad(ps, 0.1), ADADelta]
|
||||
w′ = param(randn(10, 10))
|
||||
loss(x) = Flux.mse(w*x, w′*x)
|
||||
opt = Opt([w′])
|
||||
for t=1:10^5
|
||||
l = loss(rand(10))
|
||||
back!(l)
|
||||
opt()
|
||||
end
|
||||
@test Flux.mse(w, w′) < 0.01
|
||||
end
|
||||
end
|
@ -5,5 +5,6 @@ using Flux, Base.Test
|
||||
include("utils.jl")
|
||||
include("tracker.jl")
|
||||
include("layers/normalisation.jl")
|
||||
include("optimise.jl")
|
||||
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user