work more nicely with TF batching
This commit is contained in:
parent
8335ab8134
commit
2609d47ce9
|
@ -17,7 +17,7 @@ cvalue(v::Vertex) = cvalue(value(v))
|
|||
graph(x::Tensor) = x
|
||||
|
||||
# TODO: detect variable reuse
|
||||
graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x')
|
||||
graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x)
|
||||
|
||||
function graph(model::Model, args...)
|
||||
g = Flux.graph(model)
|
||||
|
@ -30,13 +30,20 @@ function graph(model::Model, args...)
|
|||
end |> value
|
||||
end
|
||||
|
||||
graph(::typeof(*), args...) = *(reverse(args)...)
|
||||
graph(::typeof(*), args...) = *(args...)
|
||||
graph(::typeof(+), args...) = +(args...)
|
||||
graph(::typeof(softmax), x) = nn.softmax(x)
|
||||
graph(::typeof(relu), x) = nn.relu(x)
|
||||
|
||||
graph(::Input, x) = x
|
||||
|
||||
# Treat the first dimension as the batch index
|
||||
# TODO: custom data type for this
|
||||
batch(x) = reshape(x, (1,size(x)...))
|
||||
batch(xs...) = vcat(map(batch, xs)...)
|
||||
|
||||
unbatch(xs) = reshape(xs, size(xs)[2:end])
|
||||
|
||||
type Model
|
||||
session::Session
|
||||
inputs::Vector{Tensor}
|
||||
|
@ -56,7 +63,7 @@ end
|
|||
|
||||
function (m::Model)(args...)
|
||||
@assert length(args) == length(m.inputs)
|
||||
run(m.session, m.graph, Dict(zip(m.inputs, map(transpose, args))))'
|
||||
unbatch(run(m.session, m.graph, Dict(zip(m.inputs, map(batch, args)))))
|
||||
end
|
||||
|
||||
function Flux.back!(m::Model, Δ, args...)
|
||||
|
@ -79,7 +86,8 @@ function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
|
|||
for e in 1:epoch
|
||||
info("Epoch $e\n")
|
||||
@progress for (x, y) in train
|
||||
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op), Dict(m.inputs[1]=>x', Y=>y'))
|
||||
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op),
|
||||
Dict(m.inputs[1]=>batch(x), Y=>batch(y)))
|
||||
if i % 5000 == 0
|
||||
@show y
|
||||
@show accuracy(m, test)
|
||||
|
|
|
@ -5,14 +5,14 @@ export Dense
|
|||
@model type Dense
|
||||
W
|
||||
b
|
||||
x -> W*x + b
|
||||
x -> x*W + b
|
||||
end
|
||||
|
||||
Dense(in::Integer, out::Integer; init = initn) =
|
||||
Dense(init(out, in), init(out))
|
||||
Dense(init(in, out), init(1, out))
|
||||
|
||||
Base.show(io::IO, d::Dense) =
|
||||
print(io, "Dense($(size(d.W.x,2)),$(size(d.W.x,1)))")
|
||||
print(io, "Dense($(size(d.W.x,1)),$(size(d.W.x,2)))")
|
||||
|
||||
@model type Sigmoid
|
||||
layer::Model
|
||||
|
|
Loading…
Reference in New Issue