build based on f0d5624

This commit is contained in:
autodocs 2019-01-10 11:20:10 +00:00
parent 6ef058c293
commit 296ab58c7e
4 changed files with 24 additions and 25 deletions

View File

@ -11,28 +11,28 @@ m(5) == 26
m = Chain(Dense(10, 5), Dense(5, 2))
x = rand(10)
m(x) == m[2](m[1](x))</code></pre><p><code>Chain</code> also supports indexing and slicing, e.g. <code>m[2]</code> or <code>m[1:end-1]</code>. <code>m[1:3](x)</code> will calculate the output of the first three layers.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/basic.jl#L1-L18">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Dense" href="#Flux.Dense"><code>Flux.Dense</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Dense(in::Integer, out::Integer, σ = identity)</code></pre><p>Creates a traditional <code>Dense</code> layer with parameters <code>W</code> and <code>b</code>.</p><pre><code class="language-none">y = σ.(W * x .+ b)</code></pre><p>The input <code>x</code> must be a vector of length <code>in</code>, or a batch of vectors represented as an <code>in × N</code> matrix. The out <code>y</code> will be a vector or batch of length <code>out</code>.</p><pre><code class="language-julia">julia&gt; d = Dense(5, 2)
m(x) == m[2](m[1](x))</code></pre><p><code>Chain</code> also supports indexing and slicing, e.g. <code>m[2]</code> or <code>m[1:end-1]</code>. <code>m[1:3](x)</code> will calculate the output of the first three layers.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/basic.jl#L1-L18">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Dense" href="#Flux.Dense"><code>Flux.Dense</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Dense(in::Integer, out::Integer, σ = identity)</code></pre><p>Creates a traditional <code>Dense</code> layer with parameters <code>W</code> and <code>b</code>.</p><pre><code class="language-none">y = σ.(W * x .+ b)</code></pre><p>The input <code>x</code> must be a vector of length <code>in</code>, or a batch of vectors represented as an <code>in × N</code> matrix. The out <code>y</code> will be a vector or batch of length <code>out</code>.</p><pre><code class="language-julia">julia&gt; d = Dense(5, 2)
Dense(5, 2)
julia&gt; d(rand(5))
Tracked 2-element Array{Float64,1}:
0.00257447
-0.00449443</code></pre></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/basic.jl#L45-L64">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Conv" href="#Flux.Conv"><code>Flux.Conv</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Conv(size, in=&gt;out)
Conv(size, in=&gt;out, relu)</code></pre><p>Standard convolutional layer. <code>size</code> should be a tuple like <code>(2, 2)</code>. <code>in</code> and <code>out</code> specify the number of input and output channels respectively.</p><p>Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a <code>100×100×3</code> array, and a batch of 50 would be a <code>100×100×3×50</code> array.</p><p>Takes the keyword arguments <code>pad</code>, <code>stride</code> and <code>dilation</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/conv.jl#L8-L19">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.MaxPool" href="#Flux.MaxPool"><code>Flux.MaxPool</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">MaxPool(k)</code></pre><p>Max pooling layer. <code>k</code> stands for the size of the window for each dimension of the input.</p><p>Takes the keyword arguments <code>pad</code> and <code>stride</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/conv.jl#L111-L117">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.MeanPool" href="#Flux.MeanPool"><code>Flux.MeanPool</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">MeanPool(k)</code></pre><p>Mean pooling layer. <code>k</code> stands for the size of the window for each dimension of the input.</p><p>Takes the keyword arguments <code>pad</code> and <code>stride</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/conv.jl#L133-L139">source</a></section><h2><a class="nav-anchor" id="Additional-Convolution-Layers-1" href="#Additional-Convolution-Layers-1">Additional Convolution Layers</a></h2><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.DepthwiseConv" href="#Flux.DepthwiseConv"><code>Flux.DepthwiseConv</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">DepthwiseConv(size, in)
-0.00449443</code></pre></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/basic.jl#L45-L64">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Conv" href="#Flux.Conv"><code>Flux.Conv</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Conv(size, in=&gt;out)
Conv(size, in=&gt;out, relu)</code></pre><p>Standard convolutional layer. <code>size</code> should be a tuple like <code>(2, 2)</code>. <code>in</code> and <code>out</code> specify the number of input and output channels respectively.</p><p>Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a <code>100×100×3</code> array, and a batch of 50 would be a <code>100×100×3×50</code> array.</p><p>Takes the keyword arguments <code>pad</code>, <code>stride</code> and <code>dilation</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/conv.jl#L8-L19">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.MaxPool" href="#Flux.MaxPool"><code>Flux.MaxPool</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">MaxPool(k)</code></pre><p>Max pooling layer. <code>k</code> stands for the size of the window for each dimension of the input.</p><p>Takes the keyword arguments <code>pad</code> and <code>stride</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/conv.jl#L111-L117">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.MeanPool" href="#Flux.MeanPool"><code>Flux.MeanPool</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">MeanPool(k)</code></pre><p>Mean pooling layer. <code>k</code> stands for the size of the window for each dimension of the input.</p><p>Takes the keyword arguments <code>pad</code> and <code>stride</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/conv.jl#L133-L139">source</a></section><h2><a class="nav-anchor" id="Additional-Convolution-Layers-1" href="#Additional-Convolution-Layers-1">Additional Convolution Layers</a></h2><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.DepthwiseConv" href="#Flux.DepthwiseConv"><code>Flux.DepthwiseConv</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">DepthwiseConv(size, in)
DepthwiseConv(size, in=&gt;mul)
DepthwiseConv(size, in=&gt;mul, relu)</code></pre><p>Depthwise convolutional layer. <code>size</code> should be a tuple like <code>(2, 2)</code>. <code>in</code> and <code>mul</code> specify the number of input channels and channel multiplier respectively. In case the <code>mul</code> is not specified it is taken as 1.</p><p>Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a <code>100×100×3</code> array, and a batch of 50 would be a <code>100×100×3×50</code> array.</p><p>Takes the keyword arguments <code>pad</code> and <code>stride</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/conv.jl#L60-L73">source</a></section><h2><a class="nav-anchor" id="Recurrent-Layers-1" href="#Recurrent-Layers-1">Recurrent Layers</a></h2><p>Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).</p><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.RNN" href="#Flux.RNN"><code>Flux.RNN</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">RNN(in::Integer, out::Integer, σ = tanh)</code></pre><p>The most basic recurrent layer; essentially acts as a <code>Dense</code> layer, but with the output fed back into the input each time step.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/recurrent.jl#L105-L110">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.LSTM" href="#Flux.LSTM"><code>Flux.LSTM</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">LSTM(in::Integer, out::Integer)</code></pre><p>Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.</p><p>See <a href="http://colah.github.io/posts/2015-08-Understanding-LSTMs/">this article</a> for a good overview of the internals.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/recurrent.jl#L150-L158">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.GRU" href="#Flux.GRU"><code>Flux.GRU</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">GRU(in::Integer, out::Integer)</code></pre><p>Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.</p><p>See <a href="http://colah.github.io/posts/2015-08-Understanding-LSTMs/">this article</a> for a good overview of the internals.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/recurrent.jl#L191-L199">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Recur" href="#Flux.Recur"><code>Flux.Recur</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Recur(cell)</code></pre><p><code>Recur</code> takes a recurrent cell and makes it stateful, managing the hidden state in the background. <code>cell</code> should be a model of the form:</p><pre><code class="language-none">h, y = cell(h, x...)</code></pre><p>For example, here&#39;s a recurrent network that keeps a running total of its inputs.</p><pre><code class="language-julia">accum(h, x) = (h+x, x)
DepthwiseConv(size, in=&gt;mul, relu)</code></pre><p>Depthwise convolutional layer. <code>size</code> should be a tuple like <code>(2, 2)</code>. <code>in</code> and <code>mul</code> specify the number of input channels and channel multiplier respectively. In case the <code>mul</code> is not specified it is taken as 1.</p><p>Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a <code>100×100×3</code> array, and a batch of 50 would be a <code>100×100×3×50</code> array.</p><p>Takes the keyword arguments <code>pad</code> and <code>stride</code>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/conv.jl#L60-L73">source</a></section><h2><a class="nav-anchor" id="Recurrent-Layers-1" href="#Recurrent-Layers-1">Recurrent Layers</a></h2><p>Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).</p><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.RNN" href="#Flux.RNN"><code>Flux.RNN</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">RNN(in::Integer, out::Integer, σ = tanh)</code></pre><p>The most basic recurrent layer; essentially acts as a <code>Dense</code> layer, but with the output fed back into the input each time step.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/recurrent.jl#L105-L110">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.LSTM" href="#Flux.LSTM"><code>Flux.LSTM</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">LSTM(in::Integer, out::Integer)</code></pre><p>Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.</p><p>See <a href="http://colah.github.io/posts/2015-08-Understanding-LSTMs/">this article</a> for a good overview of the internals.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/recurrent.jl#L150-L158">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.GRU" href="#Flux.GRU"><code>Flux.GRU</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">GRU(in::Integer, out::Integer)</code></pre><p>Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.</p><p>See <a href="http://colah.github.io/posts/2015-08-Understanding-LSTMs/">this article</a> for a good overview of the internals.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/recurrent.jl#L191-L199">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Recur" href="#Flux.Recur"><code>Flux.Recur</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Recur(cell)</code></pre><p><code>Recur</code> takes a recurrent cell and makes it stateful, managing the hidden state in the background. <code>cell</code> should be a model of the form:</p><pre><code class="language-none">h, y = cell(h, x...)</code></pre><p>For example, here&#39;s a recurrent network that keeps a running total of its inputs.</p><pre><code class="language-julia">accum(h, x) = (h+x, x)
rnn = Flux.Recur(accum, 0)
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60</code></pre></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/recurrent.jl#L7-L26">source</a></section><h2><a class="nav-anchor" id="Activation-Functions-1" href="#Activation-Functions-1">Activation Functions</a></h2><p>Non-linearities that go between layers of your model. Most of these functions are defined in <a href="https://github.com/FluxML/NNlib.jl">NNlib</a> but are available by default in Flux.</p><p>Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call <code>σ.(xs)</code>, <code>relu.(xs)</code> and so on.</p><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.σ" href="#NNlib.σ"><code>NNlib.σ</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">σ(x) = 1 / (1 + exp(-x))</code></pre><p>Classic <a href="https://en.wikipedia.org/wiki/Sigmoid_function">sigmoid</a> activation function.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.relu" href="#NNlib.relu"><code>NNlib.relu</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">relu(x) = max(0, x)</code></pre><p><a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">Rectified Linear Unit</a> activation function.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.leakyrelu" href="#NNlib.leakyrelu"><code>NNlib.leakyrelu</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">leakyrelu(x) = max(0.01x, x)</code></pre><p>Leaky <a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">Rectified Linear Unit</a> activation function. You can also specify the coefficient explicitly, e.g. <code>leakyrelu(x, 0.01)</code>.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.elu" href="#NNlib.elu"><code>NNlib.elu</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">elu(x, α = 1) =
rnn.state # 60</code></pre></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/recurrent.jl#L7-L26">source</a></section><h2><a class="nav-anchor" id="Activation-Functions-1" href="#Activation-Functions-1">Activation Functions</a></h2><p>Non-linearities that go between layers of your model. Most of these functions are defined in <a href="https://github.com/FluxML/NNlib.jl">NNlib</a> but are available by default in Flux.</p><p>Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call <code>σ.(xs)</code>, <code>relu.(xs)</code> and so on.</p><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.σ" href="#NNlib.σ"><code>NNlib.σ</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">σ(x) = 1 / (1 + exp(-x))</code></pre><p>Classic <a href="https://en.wikipedia.org/wiki/Sigmoid_function">sigmoid</a> activation function.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.relu" href="#NNlib.relu"><code>NNlib.relu</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">relu(x) = max(0, x)</code></pre><p><a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">Rectified Linear Unit</a> activation function.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.leakyrelu" href="#NNlib.leakyrelu"><code>NNlib.leakyrelu</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">leakyrelu(x) = max(0.01x, x)</code></pre><p>Leaky <a href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">Rectified Linear Unit</a> activation function. You can also specify the coefficient explicitly, e.g. <code>leakyrelu(x, 0.01)</code>.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.elu" href="#NNlib.elu"><code>NNlib.elu</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">elu(x, α = 1) =
x &gt; 0 ? x : α * (exp(x) - 1)</code></pre><p>Exponential Linear Unit activation function. See <a href="https://arxiv.org/abs/1511.07289">Fast and Accurate Deep Network Learning by Exponential Linear Units</a>. You can also specify the coefficient explicitly, e.g. <code>elu(x, 1)</code>.</p></div></div></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="NNlib.swish" href="#NNlib.swish"><code>NNlib.swish</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">swish(x) = x * σ(x)</code></pre><p>Self-gated actvation function. See <a href="https://arxiv.org/pdf/1710.05941.pdf">Swish: a Self-Gated Activation Function</a>.</p></div></div></section><h2><a class="nav-anchor" id="Normalisation-and-Regularisation-1" href="#Normalisation-and-Regularisation-1">Normalisation &amp; Regularisation</a></h2><p>These layers don&#39;t affect the structure of the network but may improve training times or reduce overfitting.</p><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.testmode!" href="#Flux.testmode!"><code>Flux.testmode!</code></a><span class="docstring-category">Function</span>.</div><div><div><pre><code class="language-none">testmode!(m)
testmode!(m, false)</code></pre><p>Put layers like <a href="layers.html#Flux.Dropout"><code>Dropout</code></a> and <a href="layers.html#Flux.BatchNorm"><code>BatchNorm</code></a> into testing mode (or back to training mode with <code>false</code>).</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/normalise.jl#L1-L7">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.BatchNorm" href="#Flux.BatchNorm"><code>Flux.BatchNorm</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">BatchNorm(channels::Integer, σ = identity;
testmode!(m, false)</code></pre><p>Put layers like <a href="layers.html#Flux.Dropout"><code>Dropout</code></a> and <a href="layers.html#Flux.BatchNorm"><code>BatchNorm</code></a> into testing mode (or back to training mode with <code>false</code>).</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/normalise.jl#L1-L7">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.BatchNorm" href="#Flux.BatchNorm"><code>Flux.BatchNorm</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">BatchNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)</code></pre><p>Batch Normalization layer. The <code>channels</code> input should be the size of the channel dimension in your data (see below).</p><p>Given an array with <code>N</code> dimensions, call the <code>N-1</code>th the channel dimension. (For a batch of feature vectors this is just the data dimension, for <code>WHCN</code> images it&#39;s the usual channel dimension.)</p><p><code>BatchNorm</code> computes the mean and variance for each each <code>W×H×1×N</code> slice and shifts them to have a new mean and variance (corresponding to the learnable, per-channel <code>bias</code> and <code>scale</code> parameters).</p><p>See <a href="https://arxiv.org/pdf/1502.03167.pdf">Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift</a>.</p><p>Example:</p><pre><code class="language-julia">m = Chain(
Dense(28^2, 64),
BatchNorm(64, relu),
Dense(64, 10),
BatchNorm(10),
softmax)</code></pre></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/normalise.jl#L68-L96">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Dropout" href="#Flux.Dropout"><code>Flux.Dropout</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Dropout(p)</code></pre><p>A Dropout layer. For each input, either sets that input to <code>0</code> (with probability <code>p</code>) or scales it by <code>1/(1-p)</code>. This is used as a regularisation, i.e. it reduces overfitting during training.</p><p>Does nothing to the input once in <a href="layers.html#Flux.testmode!"><code>testmode!</code></a>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/normalise.jl#L15-L23">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.LayerNorm" href="#Flux.LayerNorm"><code>Flux.LayerNorm</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">LayerNorm(h::Integer)</code></pre><p>A <a href="https://arxiv.org/pdf/1607.06450.pdf">normalisation layer</a> designed to be used with recurrent hidden states of size <code>h</code>. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/5caeeccb5f8cd261a4139c235666721ea3dc6345/src/layers/normalise.jl#L46-L52">source</a></section><footer><hr/><a class="previous" href="regularisation.html"><span class="direction">Previous</span><span class="title">Regularisation</span></a><a class="next" href="../training/optimisers.html"><span class="direction">Next</span><span class="title">Optimisers</span></a></footer></article></body></html>
softmax)</code></pre></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/normalise.jl#L68-L96">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.Dropout" href="#Flux.Dropout"><code>Flux.Dropout</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">Dropout(p)</code></pre><p>A Dropout layer. For each input, either sets that input to <code>0</code> (with probability <code>p</code>) or scales it by <code>1/(1-p)</code>. This is used as a regularisation, i.e. it reduces overfitting during training.</p><p>Does nothing to the input once in <a href="layers.html#Flux.testmode!"><code>testmode!</code></a>.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/normalise.jl#L15-L23">source</a></section><section class="docstring"><div class="docstring-header"><a class="docstring-binding" id="Flux.LayerNorm" href="#Flux.LayerNorm"><code>Flux.LayerNorm</code></a><span class="docstring-category">Type</span>.</div><div><div><pre><code class="language-none">LayerNorm(h::Integer)</code></pre><p>A <a href="https://arxiv.org/pdf/1607.06450.pdf">normalisation layer</a> designed to be used with recurrent hidden states of size <code>h</code>. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.</p></div></div><a class="source-link" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/f0d5624ed2bf78423b06ac2e6fd8d54e1ca11122/src/layers/normalise.jl#L46-L52">source</a></section><footer><hr/><a class="previous" href="regularisation.html"><span class="direction">Previous</span><span class="title">Regularisation</span></a><a class="next" href="../training/optimisers.html"><span class="direction">Next</span><span class="title">Optimisers</span></a></footer></article></body></html>

View File

@ -365,7 +365,7 @@ var documenterSearchIndex = {"docs": [
"page": "Optimisers",
"title": "Optimisers",
"category": "section",
"text": "Consider a simple linear regression. We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters W and b.using Flux.Tracker\n\nW = param(rand(2, 5))\nb = param(rand(2))\n\npredict(x) = W*x .+ b\nloss(x, y) = sum((predict(x) .- y).^2)\n\nx, y = rand(5), rand(2) # Dummy data\nl = loss(x, y) # ~ 3\n\nparams = Params([W, b])\ngrads = Tracker.gradient(() -> loss(x, y), params)We want to update each parameter, using the gradient, in order to improve (reduce) the loss. Here\'s one way to do that:using Flux.Tracker: grad, update!\n\nfunction sgd()\n η = 0.1 # Learning Rate\n for p in (W, b)\n update!(p, -η * grads[p])\n end\nendIf we call sgd, the parameters W and b will change and our loss should go down.There are two pieces here: one is that we need a list of trainable parameters for the model ([W, b] in this case), and the other is the update step. In this case the update is simply gradient descent (x .-= η .* Δ), but we might choose to do something more advanced, like adding momentum.In this case, getting the variables is trivial, but you can imagine it\'d be more of a pain with some complex stack of layers.m = Chain(\n Dense(10, 5, σ),\n Dense(5, 2), softmax)Instead of having to write [m[1].W, m[1].b, ...], Flux provides a params function params(m) that returns a list of all parameters in the model for you.For the update step, there\'s nothing whatsoever wrong with writing the loop above it\'ll work just fine but Flux provides various optimisers that make it more convenient.opt = SGD([W, b], 0.1) # Gradient descent with learning rate 0.1\n\nopt() # Carry out the update, modifying `W` and `b`.An optimiser takes a parameter list and returns a function that does the same thing as update above. We can pass either opt or update to our training loop, which will then run the optimiser after every mini-batch of data."
"text": "Consider a simple linear regression. We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters W and b.using Flux.Tracker\n\nW = param(rand(2, 5))\nb = param(rand(2))\n\npredict(x) = W*x .+ b\nloss(x, y) = sum((predict(x) .- y).^2)\n\nx, y = rand(5), rand(2) # Dummy data\nl = loss(x, y) # ~ 3\n\nparams = Params([W, b])\ngrads = Tracker.gradient(() -> loss(x, y), params)We want to update each parameter, using the gradient, in order to improve (reduce) the loss. Here\'s one way to do that:using Flux.Tracker: grad, update!\n\nη = 0.1 # Learning Rate\nfor p in (W, b)\n update!(p, -η * grads[p])\nendRunning this will alter the parameters W and b and our loss should go down. Flux provides a more general way to do optimiser updates like this.opt = Descent(0.1) # Gradient descent with learning rate 0.1\n\nfor p in (W, b)\n update!(opt, p, -η * grads[p])\nendAn optimiser update! accepts a parameter and a gradient, and updates the parameter according to the chosen rule. We can also pass opt to our training loop, which will update all parameters of the model in a loop. However, we can now easily replace Descent with a more advanced optimiser such as ADAM."
},
{
@ -373,7 +373,7 @@ var documenterSearchIndex = {"docs": [
"page": "Optimisers",
"title": "Optimiser Reference",
"category": "section",
"text": "All optimisers return a function that, when called, will update the parameters passed to it.SGD\nMomentum\nNesterov\nADAM"
"text": "All optimisers return an object that, when passed to train!, will update the parameters passed to it.SGD\nMomentum\nNesterov\nADAM"
},
{
@ -389,7 +389,7 @@ var documenterSearchIndex = {"docs": [
"page": "Training",
"title": "Training",
"category": "section",
"text": "To actually train a model we need three things:A objective function, that evaluates how well a model is doing given some input data.\nA collection of data points that will be provided to the objective function.\nAn optimiser that will update the model parameters appropriately.With these we can call Flux.train!:Flux.train!(objective, data, opt)There are plenty of examples in the model zoo."
"text": "To actually train a model we need three things:A objective function, that evaluates how well a model is doing given some input data.\nA collection of data points that will be provided to the objective function.\nAn optimiser that will update the model parameters appropriately.With these we can call Flux.train!:Flux.train!(objective, params, data, opt)There are plenty of examples in the model zoo."
},
{
@ -397,7 +397,7 @@ var documenterSearchIndex = {"docs": [
"page": "Training",
"title": "Loss Functions",
"category": "section",
"text": "The objective function must return a number representing how far the model is from its target the loss of the model. The loss function that we defined in basics will work as an objective. We can also define an objective in terms of some model:m = Chain(\n Dense(784, 32, σ),\n Dense(32, 10), softmax)\n\nloss(x, y) = Flux.mse(m(x), y)\n\n# later\nFlux.train!(loss, data, opt)The objective will almost always be defined in terms of some cost function that measures the distance of the prediction m(x) from the target y. Flux has several of these built in, like mse for mean squared error or crossentropy for cross entropy loss, but you can calculate it however you want."
"text": "The objective function must return a number representing how far the model is from its target the loss of the model. The loss function that we defined in basics will work as an objective. We can also define an objective in terms of some model:m = Chain(\n Dense(784, 32, σ),\n Dense(32, 10), softmax)\n\nloss(x, y) = Flux.mse(m(x), y)\nps = Flux.params(m)\n\n# later\nFlux.train!(loss, ps, data, opt)The objective will almost always be defined in terms of some cost function that measures the distance of the prediction m(x) from the target y. Flux has several of these built in, like mse for mean squared error or crossentropy for cross entropy loss, but you can calculate it however you want."
},
{
@ -413,7 +413,7 @@ var documenterSearchIndex = {"docs": [
"page": "Training",
"title": "Callbacks",
"category": "section",
"text": "train! takes an additional argument, cb, that\'s used for callbacks so that you can observe the training process. For example:train!(objective, data, opt, cb = () -> println(\"training\"))Callbacks are called for every batch of training data. You can slow this down using Flux.throttle(f, timeout) which prevents f from being called more than once every timeout seconds.A more typical callback might look like this:test_x, test_y = # ... create single batch of test data ...\nevalcb() = @show(loss(test_x, test_y))\n\nFlux.train!(objective, data, opt,\n cb = throttle(evalcb, 5))"
"text": "train! takes an additional argument, cb, that\'s used for callbacks so that you can observe the training process. For example:train!(objective, ps, data, opt, cb = () -> println(\"training\"))Callbacks are called for every batch of training data. You can slow this down using Flux.throttle(f, timeout) which prevents f from being called more than once every timeout seconds.A more typical callback might look like this:test_x, test_y = # ... create single batch of test data ...\nevalcb() = @show(loss(test_x, test_y))\n\nFlux.train!(objective, ps, data, opt,\n cb = throttle(evalcb, 5))"
},
{

View File

@ -20,16 +20,14 @@ l = loss(x, y) # ~ 3
params = Params([W, b])
grads = Tracker.gradient(() -&gt; loss(x, y), params)</code></pre><p>We want to update each parameter, using the gradient, in order to improve (reduce) the loss. Here&#39;s one way to do that:</p><pre><code class="language-julia">using Flux.Tracker: grad, update!
function sgd()
η = 0.1 # Learning Rate
for p in (W, b)
update!(p, -η * grads[p])
end
end</code></pre><p>If we call <code>sgd</code>, the parameters <code>W</code> and <code>b</code> will change and our loss should go down.</p><p>There are two pieces here: one is that we need a list of trainable parameters for the model (<code>[W, b]</code> in this case), and the other is the update step. In this case the update is simply gradient descent (<code>x .-= η .* Δ</code>), but we might choose to do something more advanced, like adding momentum.</p><p>In this case, getting the variables is trivial, but you can imagine it&#39;d be more of a pain with some complex stack of layers.</p><pre><code class="language-julia">m = Chain(
Dense(10, 5, σ),
Dense(5, 2), softmax)</code></pre><p>Instead of having to write <code>[m[1].W, m[1].b, ...]</code>, Flux provides a params function <code>params(m)</code> that returns a list of all parameters in the model for you.</p><p>For the update step, there&#39;s nothing whatsoever wrong with writing the loop above it&#39;ll work just fine but Flux provides various <em>optimisers</em> that make it more convenient.</p><pre><code class="language-julia">opt = SGD([W, b], 0.1) # Gradient descent with learning rate 0.1
η = 0.1 # Learning Rate
for p in (W, b)
update!(p, -η * grads[p])
end</code></pre><p>Running this will alter the parameters <code>W</code> and <code>b</code> and our loss should go down. Flux provides a more general way to do optimiser updates like this.</p><pre><code class="language-julia">opt = Descent(0.1) # Gradient descent with learning rate 0.1
opt() # Carry out the update, modifying `W` and `b`.</code></pre><p>An optimiser takes a parameter list and returns a function that does the same thing as <code>update</code> above. We can pass either <code>opt</code> or <code>update</code> to our <a href="training.html">training loop</a>, which will then run the optimiser after every mini-batch of data.</p><h2><a class="nav-anchor" id="Optimiser-Reference-1" href="#Optimiser-Reference-1">Optimiser Reference</a></h2><p>All optimisers return a function that, when called, will update the parameters passed to it.</p><pre><code class="language-none">SGD
for p in (W, b)
update!(opt, p, -η * grads[p])
end</code></pre><p>An optimiser <code>update!</code> accepts a parameter and a gradient, and updates the parameter according to the chosen rule. We can also pass <code>opt</code> to our <a href="training.html">training loop</a>, which will update all parameters of the model in a loop. However, we can now easily replace <code>Descent</code> with a more advanced optimiser such as <code>ADAM</code>.</p><h2><a class="nav-anchor" id="Optimiser-Reference-1" href="#Optimiser-Reference-1">Optimiser Reference</a></h2><p>All optimisers return an object that, when passed to <code>train!</code>, will update the parameters passed to it.</p><pre><code class="language-none">SGD
Momentum
Nesterov
ADAM</code></pre><footer><hr/><a class="previous" href="../models/layers.html"><span class="direction">Previous</span><span class="title">Model Reference</span></a><a class="next" href="training.html"><span class="direction">Next</span><span class="title">Training</span></a></footer></article></body></html>

View File

@ -6,14 +6,15 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
ga('create', 'UA-36890222-9', 'auto');
ga('send', 'pageview');
</script><link href="https://cdnjs.cloudflare.com/ajax/libs/normalize/4.2.0/normalize.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/documenter.css" rel="stylesheet" type="text/css"/><link href="../../flux.css" rel="stylesheet" type="text/css"/></head><body><nav class="toc"><h1>Flux</h1><select id="version-selector" onChange="window.location.href=this.value" style="visibility: hidden"></select><form class="search" id="search-form" action="../search.html"><input id="search-query" name="q" type="text" placeholder="Search docs"/></form><ul><li><a class="toctext" href="../index.html">Home</a></li><li><span class="toctext">Building Models</span><ul><li><a class="toctext" href="../models/basics.html">Basics</a></li><li><a class="toctext" href="../models/recurrence.html">Recurrence</a></li><li><a class="toctext" href="../models/regularisation.html">Regularisation</a></li><li><a class="toctext" href="../models/layers.html">Model Reference</a></li></ul></li><li><span class="toctext">Training Models</span><ul><li><a class="toctext" href="optimisers.html">Optimisers</a></li><li class="current"><a class="toctext" href="training.html">Training</a><ul class="internal"><li><a class="toctext" href="#Loss-Functions-1">Loss Functions</a></li><li><a class="toctext" href="#Datasets-1">Datasets</a></li><li><a class="toctext" href="#Callbacks-1">Callbacks</a></li></ul></li></ul></li><li><a class="toctext" href="../data/onehot.html">One-Hot Encoding</a></li><li><a class="toctext" href="../gpu.html">GPU Support</a></li><li><a class="toctext" href="../saving.html">Saving &amp; Loading</a></li><li><span class="toctext">Internals</span><ul><li><a class="toctext" href="../internals/tracker.html">Backpropagation</a></li></ul></li><li><a class="toctext" href="../community.html">Community</a></li></ul></nav><article id="docs"><header><nav><ul><li>Training Models</li><li><a href="training.html">Training</a></li></ul><a class="edit-page" href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/training/training.md"><span class="fa"></span> Edit on GitHub</a></nav><hr/><div id="topbar"><span>Training</span><a class="fa fa-bars" href="#"></a></div></header><h1><a class="nav-anchor" id="Training-1" href="#Training-1">Training</a></h1><p>To actually train a model we need three things:</p><ul><li>A <em>objective function</em>, that evaluates how well a model is doing given some input data.</li><li>A collection of data points that will be provided to the objective function.</li><li>An <a href="optimisers.html">optimiser</a> that will update the model parameters appropriately.</li></ul><p>With these we can call <code>Flux.train!</code>:</p><pre><code class="language-julia">Flux.train!(objective, data, opt)</code></pre><p>There are plenty of examples in the <a href="https://github.com/FluxML/model-zoo">model zoo</a>.</p><h2><a class="nav-anchor" id="Loss-Functions-1" href="#Loss-Functions-1">Loss Functions</a></h2><p>The objective function must return a number representing how far the model is from its target the <em>loss</em> of the model. The <code>loss</code> function that we defined in <a href="../models/basics.html">basics</a> will work as an objective. We can also define an objective in terms of some model:</p><pre><code class="language-julia">m = Chain(
</script><link href="https://cdnjs.cloudflare.com/ajax/libs/normalize/4.2.0/normalize.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/documenter.css" rel="stylesheet" type="text/css"/><link href="../../flux.css" rel="stylesheet" type="text/css"/></head><body><nav class="toc"><h1>Flux</h1><select id="version-selector" onChange="window.location.href=this.value" style="visibility: hidden"></select><form class="search" id="search-form" action="../search.html"><input id="search-query" name="q" type="text" placeholder="Search docs"/></form><ul><li><a class="toctext" href="../index.html">Home</a></li><li><span class="toctext">Building Models</span><ul><li><a class="toctext" href="../models/basics.html">Basics</a></li><li><a class="toctext" href="../models/recurrence.html">Recurrence</a></li><li><a class="toctext" href="../models/regularisation.html">Regularisation</a></li><li><a class="toctext" href="../models/layers.html">Model Reference</a></li></ul></li><li><span class="toctext">Training Models</span><ul><li><a class="toctext" href="optimisers.html">Optimisers</a></li><li class="current"><a class="toctext" href="training.html">Training</a><ul class="internal"><li><a class="toctext" href="#Loss-Functions-1">Loss Functions</a></li><li><a class="toctext" href="#Datasets-1">Datasets</a></li><li><a class="toctext" href="#Callbacks-1">Callbacks</a></li></ul></li></ul></li><li><a class="toctext" href="../data/onehot.html">One-Hot Encoding</a></li><li><a class="toctext" href="../gpu.html">GPU Support</a></li><li><a class="toctext" href="../saving.html">Saving &amp; Loading</a></li><li><span class="toctext">Internals</span><ul><li><a class="toctext" href="../internals/tracker.html">Backpropagation</a></li></ul></li><li><a class="toctext" href="../community.html">Community</a></li></ul></nav><article id="docs"><header><nav><ul><li>Training Models</li><li><a href="training.html">Training</a></li></ul><a class="edit-page" href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/training/training.md"><span class="fa"></span> Edit on GitHub</a></nav><hr/><div id="topbar"><span>Training</span><a class="fa fa-bars" href="#"></a></div></header><h1><a class="nav-anchor" id="Training-1" href="#Training-1">Training</a></h1><p>To actually train a model we need three things:</p><ul><li>A <em>objective function</em>, that evaluates how well a model is doing given some input data.</li><li>A collection of data points that will be provided to the objective function.</li><li>An <a href="optimisers.html">optimiser</a> that will update the model parameters appropriately.</li></ul><p>With these we can call <code>Flux.train!</code>:</p><pre><code class="language-julia">Flux.train!(objective, params, data, opt)</code></pre><p>There are plenty of examples in the <a href="https://github.com/FluxML/model-zoo">model zoo</a>.</p><h2><a class="nav-anchor" id="Loss-Functions-1" href="#Loss-Functions-1">Loss Functions</a></h2><p>The objective function must return a number representing how far the model is from its target the <em>loss</em> of the model. The <code>loss</code> function that we defined in <a href="../models/basics.html">basics</a> will work as an objective. We can also define an objective in terms of some model:</p><pre><code class="language-julia">m = Chain(
Dense(784, 32, σ),
Dense(32, 10), softmax)
loss(x, y) = Flux.mse(m(x), y)
ps = Flux.params(m)
# later
Flux.train!(loss, data, opt)</code></pre><p>The objective will almost always be defined in terms of some <em>cost function</em> that measures the distance of the prediction <code>m(x)</code> from the target <code>y</code>. Flux has several of these built in, like <code>mse</code> for mean squared error or <code>crossentropy</code> for cross entropy loss, but you can calculate it however you want.</p><h2><a class="nav-anchor" id="Datasets-1" href="#Datasets-1">Datasets</a></h2><p>The <code>data</code> argument provides a collection of data to train with (usually a set of inputs <code>x</code> and target outputs <code>y</code>). For example, here&#39;s a dummy data set with only one data point:</p><pre><code class="language-julia">x = rand(784)
Flux.train!(loss, ps, data, opt)</code></pre><p>The objective will almost always be defined in terms of some <em>cost function</em> that measures the distance of the prediction <code>m(x)</code> from the target <code>y</code>. Flux has several of these built in, like <code>mse</code> for mean squared error or <code>crossentropy</code> for cross entropy loss, but you can calculate it however you want.</p><h2><a class="nav-anchor" id="Datasets-1" href="#Datasets-1">Datasets</a></h2><p>The <code>data</code> argument provides a collection of data to train with (usually a set of inputs <code>x</code> and target outputs <code>y</code>). For example, here&#39;s a dummy data set with only one data point:</p><pre><code class="language-julia">x = rand(784)
y = rand(10)
data = [(x, y)]</code></pre><p><code>Flux.train!</code> will call <code>loss(x, y)</code>, calculate gradients, update the weights and then move on to the next data point if there is one. We can train the model on the same data three times:</p><pre><code class="language-julia">data = [(x, y), (x, y), (x, y)]
# Or equivalently
@ -28,8 +29,8 @@ INFO: Epoch 2
hello
julia&gt; @epochs 2 Flux.train!(...)
# Train for two epochs</code></pre><h2><a class="nav-anchor" id="Callbacks-1" href="#Callbacks-1">Callbacks</a></h2><p><code>train!</code> takes an additional argument, <code>cb</code>, that&#39;s used for callbacks so that you can observe the training process. For example:</p><pre><code class="language-julia">train!(objective, data, opt, cb = () -&gt; println(&quot;training&quot;))</code></pre><p>Callbacks are called for every batch of training data. You can slow this down using <code>Flux.throttle(f, timeout)</code> which prevents <code>f</code> from being called more than once every <code>timeout</code> seconds.</p><p>A more typical callback might look like this:</p><pre><code class="language-julia">test_x, test_y = # ... create single batch of test data ...
# Train for two epochs</code></pre><h2><a class="nav-anchor" id="Callbacks-1" href="#Callbacks-1">Callbacks</a></h2><p><code>train!</code> takes an additional argument, <code>cb</code>, that&#39;s used for callbacks so that you can observe the training process. For example:</p><pre><code class="language-julia">train!(objective, ps, data, opt, cb = () -&gt; println(&quot;training&quot;))</code></pre><p>Callbacks are called for every batch of training data. You can slow this down using <code>Flux.throttle(f, timeout)</code> which prevents <code>f</code> from being called more than once every <code>timeout</code> seconds.</p><p>A more typical callback might look like this:</p><pre><code class="language-julia">test_x, test_y = # ... create single batch of test data ...
evalcb() = @show(loss(test_x, test_y))
Flux.train!(objective, data, opt,
Flux.train!(objective, ps, data, opt,
cb = throttle(evalcb, 5))</code></pre><footer><hr/><a class="previous" href="optimisers.html"><span class="direction">Previous</span><span class="title">Optimisers</span></a><a class="next" href="../data/onehot.html"><span class="direction">Next</span><span class="title">One-Hot Encoding</span></a></footer></article></body></html>