remove compiler

This commit is contained in:
Mike J Innes 2017-09-27 20:37:25 +01:00
parent 96d1c55263
commit 2ec8401d2c
8 changed files with 0 additions and 413 deletions

View File

@ -22,8 +22,6 @@ using .Optimise
include("utils.jl")
include("onehot.jl")
include("compiler/Compiler.jl")
include("layers/stateless.jl")
include("layers/basic.jl")
include("layers/recurrent.jl")

View File

@ -1,14 +0,0 @@
module Compiler
using MacroTools, DataFlow, DataFlow.Interpreter
using DataFlow: graphm, syntax, prewalk!, postwalk!, prewalk, postwalk,
iscyclic, Constant, constant, isconstant, group, Split,
detuple, value, inputs, thread!, value, inputs, inputnode,
spliceinputs, bumpinputs, Line, Frame, applylines, graphinputs
include("code.jl")
include("interp.jl")
include("loops.jl")
end

View File

@ -1,77 +0,0 @@
import DataFlow: cse
using MacroTools: @q, @>
graph(m) = nothing
function graphdef(ex, params = [])
@capture(shortdef(ex), (args__,) -> body_)
body = @> body MacroTools.flatten liftloops graphm DataFlow.il
body = map(x -> x in params ? :(self.$x) : x, body)
return args, body
end
function makegraph(graph, args, params = [])
graph = prewalk(graph) do v
isconstant(v) && (i = findfirst(args, value(v[1]))) 0 ?
inputnode(i) :
v
end
graph = map(graph) do x
x isa Offset ?
:(Flux.Compiler.Offset($(Expr(:quote, x.name)), $(x.n),
$(x.name in params ? :(self.$(x.name)) : x.name))) :
x
end
vertex(:($DataFlow.Frame(self)), graph)
end
function build_type(T, params)
@esc T
:(type $T
$(params...)
end)
end
function build_forward(body, args)
iscyclic(body) && return :(error("Can't run forward pass on a cyclic graph"))
applylines(syntax(cse(body)))
end
import Lazy: groupby
# TODO: type hints for parameters
function process_type(ex)
@capture(ex, type T_ fs__ end)
@destruct [params = false || [],
funcs = true || []] = groupby(x->isexpr(x, :->, :function), fs)
@assert length(funcs) == 1
pnames = namify.(params)
args, body = graphdef(funcs[1], pnames)
self = esc(:self)
quote
$(build_type(T, params))
$(esc(:((self::$T)($(args...)) = $(build_forward(body, args)))))
$(esc(:(Flux.Compiler.graph(self::$T)))) = $(DataFlow.constructor(map(esc, makegraph(body, args, params))))
nothing
end
end
function process_anon(ex)
args, body = graphdef(ex)
:(Capacitor($(DataFlow.constructor(map(esc, makegraph(body, args)[1])))))
end
function process_def(ex)
# TODO: make a singleton net type
@capture(ex, f_(xs__) = body_)
:($(esc(f)) = @net $(esc(:(($(xs...),) -> $body))); nothing)
end
macro net(ex)
ex = shortdef(ex)
isexpr(ex, :type) ? process_type(ex) :
@capture(ex, (__,) -> _) ? process_anon(ex) :
@capture(ex, _(__) = _) ? process_def(ex) :
error("Unsupported model expression $ex")
end

View File

@ -1,39 +0,0 @@
function astuple(xs::Vertex)
isconstant(xs) && value(xs[1]) isa Tuple ? value(xs[1]) :
xs isa Vertex && value(xs) == tuple ? inputs(xs) :
nothing
end
astuple(xs::Tuple) = xs
astuple(xs) = nothing
function astuples(xs)
xs = [astuple(x) for x in xs]
all(x->!(x==nothing), xs) ? xs : nothing
end
function interp(ctx, f, xs...)
g = graph(f)
g nothing && iscyclic(g) && error("Can't interpret cyclic graph")
@icatch(ctx, g nothing ?
interpret(ctx, g, xs...) :
f(xs...))
end
function interpmodel(m, args...)
ctx = Context(mux(iconst, iline, ilambda, iargs, ituple, interp))
@ithrow interp(ctx, m, args...)
end
# Anonymous models
struct Capacitor
graph::IVertex{Any}
end
(m::Capacitor)(xs...) = interpmodel(m, xs...)
graph(cap::Capacitor) = cap.graph
Base.show(io::IO, ::Capacitor) = print(io, "Capacitor(...)")

View File

@ -1,191 +0,0 @@
using ..Flux: stack, unstack, squeeze, unsqueeze
# Stateful Models
mutable struct Stateful
model
states::Vector{Any}
istate::Vector{Any}
ostate::Vector{Any}
end
Stateful(model, ss) = Stateful(model, ss, ss, ss)
function Base.show(io::IO, m::Stateful)
print(io, "Stateful(")
show(io, m.model)
print(io, ")")
end
function (m::Stateful)(xs...)
m.istate = m.ostate
state, y = m.model((m.istate...,), xs...)
m.ostate = collect(state)
return y
end
# Seq Models
struct SeqModel
model
steps::Int
end
seqtuple(x, n) = x
seqtuple(xs::Tuple, n) = seqtuple.(xs, n)
seqtuple(xs::AbstractArray, n) =
ndims(xs) < 3 ? xs :
n 0 && size(xs, 2) n ? error("Expecting sequence length $n, got $(size(xs, 2))") :
(unstack(xs, 2)...)
reseq(x) = x
reseq(x::Tuple{}) = ()
reseq(xs::Tuple) = all(isa.(xs, AbstractArray) .& (ndims.(xs) .≥ 2)) ? stack(xs, 2) : reseq.(xs)
function (m::SeqModel)(xs...)
xs = seqtuple(xs, m.steps)
reseq(m.model(xs...))
end
graph(m::SeqModel) = graph(m.model)
# Recurrent Graphs
struct Offset
name::Symbol
n::Int
default::Nullable{Any}
end
Offset(name, n) = Offset(name, n, nothing)
Base.:-(o::Offset) = Offset(o.name, -o.n, o.default)
function liftloops(ex)
ex = DataFlow.normedges(ex)
decls = Dict()
ex = MacroTools.postwalk(ex) do ex
@capture(ex, x_{n_}) || return ex
haskey(decls, (x,n)) && return namify(decls[(x,n)])
@gensym edge
decls[(x,n)] = :($edge = $(Offset(x,n))($x))
edge
end
prepend!(ex.args, collect(values(decls)))
ex
end
function hasloops(model)
g = graph(model)
g == nothing && return false
iscyclic(g) && return true
result = false
map(m -> hasloops(m) && (result = true), g)
return result
end
function atomise(model)
postwalk(graph(model)) do v
hasloops(value(v)) || return v
spliceinputs(atomise(value(v)), inputs(v)...)
end
end
function collect_state(v::IVertex)
state = typeof(v)[]
offset = Int[]
default = []
prewalk!(v) do v
value(v) isa Offset || return v
if (i = findfirst(state, v[1])) == 0
push!(state, v[1])
push!(offset, max(0, -value(v).n))
push!(default, get(value(v).default))
else
offset[i] = max(offset[i], -value(v).n)
end
v
end
return state, offset, default
end
hiddeninput(n, t) = vertex(Split(t), inputnode(n))
# TODO: nicer way to do this.
create_steps(v::IVertex, n) = [bumpinputs(spliceinputs(v, [hiddeninput(n, t) for n = 1:graphinputs(v)]...)) for t = 1:n]
function getvar(n, step, steps, offset, default)
if step < 1
hiddeninput(1, sum(offset[1:n-1]) + 1 - step)
elseif step 1:length(steps)
constant(default[n])
else
steps[step][1,n]
end
end
function stateout(steps, offset, default)
outs = []
defaults = []
for i = 1:length(offset), j = 1:offset[i]
push!(outs, getvar(i, length(steps)-j+1, steps, offset, default))
push!(defaults, default[i])
end
group(outs...), defaults
end
# Input: (hidden1, hidden2, ...), (x1, x2, ...)
# Output: (hidden1, hidden2, ...), (y1, y2, ...)
# TODO: make sure there's a reasonable order for hidden states
function unrollgraph(v::IVertex, n)
state, offset, default = collect_state(v)
v = group(group(state...), v)
steps = create_steps(v, n)
for i = 1:n
vars = inputs(steps[i][1])
postwalk!(steps[i]) do v
value(v) isa Offset || return v
varid = findfirst(vars,v[1])
getvar(varid, value(v).n + i, steps, offset, default)
end
end
out = group(map(x->x[2], steps)...)
state, defaults = stateout(steps, offset, default)
group(state,out), defaults
end
unrollgraph(m, n; kws...) = unrollgraph(atomise(m), n; kws...)
function unroll(model, n)
graph, state = unrollgraph(model, n)
SeqModel(Stateful(Capacitor(graph), state), n)
end
function stateless(s::Stateful)
v = graph(s.model)
v = spliceinputs(v, group(constant.(s.states)...),
[inputnode(i) for i = 1:graphinputs(v)-1]...)
Capacitor(v[2])
end
stateless(s::SeqModel) = SeqModel(stateless(s.model), s.steps)
function unseqin(v::IVertex)
prewalk(v) do v
# TODO: inputidx function
isa(value(v), Split) && DataFlow.isinput(v[1]) && value(v[1]).n > 1 ? v[1] : v
end
end
unseqout(v::IVertex) = group(v[1], v[2][1])
unseq(graph) = unseqout(unseqin(graph))
function unroll1(model)
graph, state = unrollgraph(model, 1)
Stateful(Capacitor(unseq(graph)), state)
end
flip(model) = Capacitor(map(x -> x isa Offset ? -x : x, atomise(model)))

View File

@ -26,9 +26,6 @@ Optimise.children(c::Chain) = c.layers
(s::Chain)(x) = foldl((x, m) -> m(x), x, s.layers)
Compiler.graph(s::Chain) =
foldl((v, m) -> vertex(m, v), constant(inputnode(1)), s.layers)
Base.getindex(c::Chain, i::AbstractArray) = Chain(c.layers[i]...)
function Base.show(io::IO, c::Chain)

View File

@ -1,86 +0,0 @@
using DataFlow, MacroTools
using Flux: stack, unsqueeze
using Flux.Compiler: @net, graph
using DataFlow: Line, Frame
@net type Affine
W
b
x -> x*W .+ b
end
Affine(in::Integer, out::Integer; init = Flux.initn) =
Affine(init(in, out), init(1, out))
@net type TLP
first
second
function (x)
l1 = σ.(first(x))
l2 = softmax(second(l1))
end
end
@net type Recurrent
Wxy; Wyy; by
y
function (x)
y = tanh.( x * Wxy .+ y{-1} * Wyy .+ by )
end
end
Recurrent(in, out; init = Flux.initn) =
Recurrent(init((in, out)), init((out, out)), init(1, out), init(1, out))
syntax(v::Vertex) = prettify(DataFlow.syntax(v))
syntax(x) = syntax(graph(x))
@testset "Compiler" begin
xs = randn(1, 10)
d = Affine(10, 20)
@test d(xs) (xs*d.W + d.b)
d1 = @net x -> x * d.W + d.b
let
@capture(syntax(d), _Frame(_Line((+).(x_[1] * W_, b_))))
@test isa(x, DataFlow.Input) && W isa Array && b isa Array
end
let a1 = Affine(10, 20), a2 = Affine(20, 15)
tlp = TLP(a1, a2)
@test tlp(xs) softmax(a2(σ.(a1(xs))))
@test Flux.Compiler.interpmodel(tlp, xs) softmax(a2(σ.(a1(xs))))
end
let tlp = TLP(Affine(10, 21), Affine(20, 15))
e = try
Flux.Compiler.interpmodel(tlp, rand(1, 10))
catch e
e
end
@test e.trace[end].func == :TLP
@test e.trace[end-1].func == Symbol("Affine")
end
function apply(model, xs, state)
ys = similar(xs, 0)
for x in xs
state, y = model(state, x)
push!(ys, y)
end
state, ys
end
@testset "RNN unrolling" begin
r = Recurrent(10, 5)
xs = [rand(1, 10) for _ = 1:3]
_, ys = apply(Flux.Compiler.unroll1(r).model, xs, (r.y,))
@test ys[1] == tanh.(xs[1] * r.Wxy .+ r.y * r.Wyy .+ r.by)
ru = Flux.Compiler.unroll(r, 3)
ru(unsqueeze(stack(squeeze.(xs, 1), 1), 1))[1] == squeeze.(ys, 1)
end
end

View File

@ -2,7 +2,6 @@ using Flux, Base.Test
@testset "Flux" begin
include("compiler.jl")
include("utils.jl")
include("tracker.jl")