Added consistency with ŷ and unicode chars

This commit is contained in:
Adarsh Kumar 2020-03-02 20:00:47 +05:30 committed by GitHub
parent 5565250c28
commit 2f05094068
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 29 additions and 25 deletions

View File

@ -2,7 +2,7 @@
"""
mae(, y)
Return the mean of absolute error `sum(abs.(ŷ .- y)) * 1 / length(y)`
Return the mean of absolute error `sum(abs.(ŷ .- y)) / length(y)`
"""
mae(, y) = sum(abs.( .- y)) * 1 // length(y)
@ -16,23 +16,25 @@ mse(ŷ, y) = sum((ŷ .- y).^2) * 1 // length(y)
"""
msle(, y; ϵ1=eps.(Float64.()))
msle(, y; ϵ = eps.(Float64.()))
Mean Squared Logarithmic Error. Returns the mean of the squared logarithmic errors `sum((log.(ŷ+ϵ1) .- log.(y+ϵ2)).^2) * 1 / length(y)`.<br>
The `ϵ` term provides numerical stability. This error penalizes an under-predicted estimate greater than an over-predicted estimate.
Returns the mean of the squared logarithmic errors `sum((log.(ŷ + ϵ) .- log.(y + ϵ)).^2) / length(y)`.
The `ϵ` term provides numerical stability.
This error penalizes an under-predicted estimate greater than an over-predicted estimate.
"""
msle(, y; ϵ=eps.()) = sum((log.(+ϵ).-log.(y+ϵ)).^2) * 1 // length(y)
msle(, y; ϵ = eps.()) = sum((log.( + ϵ).-log.(y + ϵ)).^2) * 1 // length(y)
"""
huber_loss(, y; delta=1.0)
huber_loss(, y; delta = 1.0)
Computes the mean of the Huber loss given the prediction `` and true values `y`. By default, delta is set to 1.0.
| 0.5*|(-y)|, for |-y|<=delta
| 0.5*| - y|, for | - y| <= delta
Hubber loss = |
| delta*(|-y| - 0.5*delta), otherwise
| delta*(|- y| - 0.5*delta), otherwise
[`Huber Loss`](https://en.wikipedia.org/wiki/Huber_loss).
"""
@ -151,6 +153,7 @@ end
poisson(, y)
Poisson loss function is a measure of how the predicted distribution diverges from the expected distribution.
Returns `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`
[Poisson Loss](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
"""
@ -160,48 +163,49 @@ poisson(ŷ, y) = sum(ŷ .- y .* log.(ŷ)) *1 // size(y,2)
hinge(, y)
Measures the loss given the prediction `` and true labels `y` (containing 1 or -1).
Returns `sum((max.(0,1 .-ŷ .* y))) *1 // size(y, 2)`
Returns `sum((max.(0, 1 .- ŷ .* y))) / size(y, 2)`
[Hinge Loss](https://en.wikipedia.org/wiki/Hinge_loss)
See also [`squared_hinge`](@ref).
"""
hinge(, y) = sum(max.(0, 1 .- .* y)) *1 // size(y,2)
hinge(, y) = sum(max.(0, 1 .- .* y)) *1 // size(y, 2)
"""
squared_hinge(, y)
Computes squared hinge loss given the prediction `` and true labels `y` (conatining 1 or -1).
Returns `sum((max.(0,1 .-ŷ .* y)).^2) *1 // size(y, 2)`
Returns `sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)`
See also [`hinge`](@ref).
"""
squared_hinge(, y) = sum((max.(0,1 .- .* y)).^2) *1//size(y,2)
squared_hinge(, y) = sum((max.(0, 1 .- .* y)).^2) *1 // size(y, 2)
"""
dice_coeff_loss(y_pred, y_true, smooth = 1)
dice_coeff_loss(ŷ, y, smooth = 1)
Loss function used in Image Segmentation. Calculates loss based on dice coefficient. Similar to F1_score.
Dice_Coefficient(A,B) = 2 * sum( |A*B| + smooth) / (sum( A^2 ) + sum( B^2 )+ smooth)
Dice_Coefficient(, y) = 2 * sum( |.* y| + smooth) / (sum( .^2 ) + sum( y.^2 ) + smooth)
Dice_loss = 1 - Dice_Coefficient
Ref: [V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
[V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation](https://arxiv.org/pdf/1606.04797v1.pdf)
"""
function dice_coeff_loss(y_pred, y_true; smooth=eltype(y_pred)(1.0))
intersection = sum(y_true.*y_pred)
return 1 - (2*intersection + smooth)/(sum(y_true.^2) + sum(y_pred.^2)+smooth)
function dice_coeff_loss(ŷ, y; smooth = eltype()(1.0))
intersection = sum(y.*)
return 1 - (2*intersection + smooth) / (sum(y.^2) + sum(ŷ.^2) + smooth)
end
"""
tversky_loss(y_pred, y_true, beta = 0.7)
tversky_loss(ŷ, y, β = 0.7)
Used with imbalanced data to give more weightage to False negatives. Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
Used with imbalanced data to give more weightage to False negatives.
Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
tversky_loss(,y,beta) = 1 - sum(|y.*| + 1) / (sum(y.* + beta*(1 .- y).* + (1 .- beta)*y.*(1 .- ))+ 1)
tversky_loss(, y, β) = 1 - sum(|y.*| + 1) / (sum(y.* + β *(1 .- y).* + (1 - β).*y.*(1 .- ))+ 1)
Ref: [Tversky loss function for image segmentation using 3D fully convolutional deep networks](https://arxiv.org/pdf/1706.05721.pdf)
[Tversky loss function for image segmentation using 3D fully convolutional deep networks](https://arxiv.org/pdf/1706.05721.pdf)
"""
function tversky_loss(y_pred, y_true; beta = eltype(y_pred)(0.7))
intersection = sum(y_true.*y_pred)
return 1 - (intersection+1)/(sum(y_true.*y_pred + beta*(1 .- y_true).* y_pred + (1-beta).*y_true.*(1 .- y_pred))+1)
function tversky_loss(ŷ, y; β = eltype()(0.7))
intersection = sum(y.*)
return 1 - (intersection + 1) / (sum(y.* + β *(1 .- y).* + (1 - β).*y.*(1 .- )) + 1)
end