diff --git a/latest/models/layers.html b/latest/models/layers.html index 34deb424..fb3c870b 100644 --- a/latest/models/layers.html +++ b/latest/models/layers.html @@ -11,19 +11,19 @@ m(5) == 26 m = Chain(Dense(10, 5), Dense(5, 2)) x = rand(10) -m(x) == m[2](m[1](x))

Chain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.

source
Flux.DenseType.
Dense(in::Integer, out::Integer, σ = identity)

Creates a traditional Dense layer with parameters W and b.

y = σ.(W * x .+ b)

The input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length out.

julia> d = Dense(5, 2)
+m(x) == m[2](m[1](x))

Chain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.

source
Flux.DenseType.
Dense(in::Integer, out::Integer, σ = identity)

Creates a traditional Dense layer with parameters W and b.

y = σ.(W * x .+ b)

The input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length out.

julia> d = Dense(5, 2)
 Dense(5, 2)
 
 julia> d(rand(5))
 Tracked 2-element Array{Float64,1}:
   0.00257447
-  -0.00449443
source

Recurrent Layers

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNFunction.
RNN(in::Integer, out::Integer, σ = tanh)

The most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step.

source
Flux.LSTMFunction.
LSTM(in::Integer, out::Integer, σ = tanh)

Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.

See this article for a good overview of the internals.

source
Flux.RecurType.
Recur(cell)

Recur takes a recurrent cell and makes it stateful, managing the hidden state in the background. cell should be a model of the form:

h, y = cell(h, x...)

For example, here's a recurrent network that keeps a running total of its inputs.

accum(h, x) = (h+x, x)
+  -0.00449443
source

Recurrent Layers

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNFunction.
RNN(in::Integer, out::Integer, σ = tanh)

The most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step.

source
Flux.LSTMFunction.
LSTM(in::Integer, out::Integer, σ = tanh)

Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.

See this article for a good overview of the internals.

source
Flux.RecurType.
Recur(cell)

Recur takes a recurrent cell and makes it stateful, managing the hidden state in the background. cell should be a model of the form:

h, y = cell(h, x...)

For example, here's a recurrent network that keeps a running total of its inputs.

accum(h, x) = (h+x, x)
 rnn = Flux.Recur(accum, 0)
 rnn(2) # 2
 rnn(3) # 3
 rnn.state # 5
 rnn.(1:10) # apply to a sequence
-rnn.state # 60
source

Activation Functions

Non-linearities that go between layers of your model. Most of these functions are defined in NNlib but are available by default in Flux.

Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs), relu.(xs) and so on.

NNlib.σFunction.
σ(x) = 1 / (1 + exp(-x))

Classic sigmoid activation function.

1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀│
+rnn.state # 60
source

Activation Functions

Non-linearities that go between layers of your model. Most of these functions are defined in NNlib but are available by default in Flux.

Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs), relu.(xs) and so on.

NNlib.σFunction.
σ(x) = 1 / (1 + exp(-x))

Classic sigmoid activation function.

1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀│
   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠒⠉⠉⠀⠀│
   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠚⠁⠀⠀⠀⠀⠀⠀⠀│
   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
@@ -98,4 +98,4 @@ rnn.state # 60
source

Normalisation & Regularisation

These layers don't affect the structure of the network but may improve training times or reduce overfitting.

Flux.testmode!Function.
testmode!(m)
-testmode!(m, false)

Put layers like Dropout and BatchNorm into testing mode (or back to training mode with false).

source
Flux.DropoutType.
Dropout(p)

A Dropout layer. For each input, either sets that input to 0 (with probability p) or scales it by 1/(1-p). This is used as a regularisation, i.e. it reduces overfitting during training.

Does nothing to the input once in testmode!.

source
Flux.LayerNormType.
LayerNorm(h::Integer)

A normalisation layer designed to be used with recurrent hidden states of size h. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.

source
+testmode!(m, false)

Put layers like Dropout and BatchNorm into testing mode (or back to training mode with false).

source
Flux.DropoutType.
Dropout(p)

A Dropout layer. For each input, either sets that input to 0 (with probability p) or scales it by 1/(1-p). This is used as a regularisation, i.e. it reduces overfitting during training.

Does nothing to the input once in testmode!.

source
Flux.LayerNormType.
LayerNorm(h::Integer)

A normalisation layer designed to be used with recurrent hidden states of size h. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.

source
diff --git a/latest/training/optimisers.html b/latest/training/optimisers.html index eb73edd7..96d774cc 100644 --- a/latest/training/optimisers.html +++ b/latest/training/optimisers.html @@ -24,4 +24,4 @@ end

If we call update, the parameters W Dense(10, 5, σ), Dense(5, 2), softmax)

Instead of having to write [m[1].W, m[1].b, ...], Flux provides a params function params(m) that returns a list of all parameters in the model for you.

For the update step, there's nothing whatsoever wrong with writing the loop above – it'll work just fine – but Flux provides various optimisers that make it more convenient.

opt = SGD([W, b], 0.1) # Gradient descent with learning rate 0.1
 
-opt() # Carry out the update, modifying `W` and `b`.

An optimiser takes a parameter list and returns a function that does the same thing as update above. We can pass either opt or update to our training loop, which will then run the optimiser after every mini-batch of data.

Optimiser Reference

All optimisers return a function that, when called, will update the parameters passed to it.

Flux.Optimise.SGDFunction.
SGD(params, η = 0.1; decay = 0)

Classic gradient descent optimiser with learning rate η. For each parameter p and its gradient δp, this runs p -= η*δp.

Supports inverse decaying learning rate if the decay argument is provided.

source
Flux.Optimise.MomentumFunction.
Momentum(params, η = 0.01; ρ = 0.9, decay = 0)

SGD with learning rate η, momentum ρ and optional learning rate inverse decay.

source
Flux.Optimise.NesterovFunction.
Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)

SGD with learning rate η, Nesterov momentum ρ and optional learning rate inverse decay.

source
Flux.Optimise.ADAMFunction.
ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)

ADAM optimiser.

source
+opt() # Carry out the update, modifying `W` and `b`.

An optimiser takes a parameter list and returns a function that does the same thing as update above. We can pass either opt or update to our training loop, which will then run the optimiser after every mini-batch of data.

Optimiser Reference

All optimisers return a function that, when called, will update the parameters passed to it.

Flux.Optimise.SGDFunction.
SGD(params, η = 0.1; decay = 0)

Classic gradient descent optimiser with learning rate η. For each parameter p and its gradient δp, this runs p -= η*δp.

Supports inverse decaying learning rate if the decay argument is provided.

source
Flux.Optimise.MomentumFunction.
Momentum(params, η = 0.01; ρ = 0.9, decay = 0)

SGD with learning rate η, momentum ρ and optional learning rate inverse decay.

source
Flux.Optimise.NesterovFunction.
Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)

SGD with learning rate η, Nesterov momentum ρ and optional learning rate inverse decay.

source
Flux.Optimise.ADAMFunction.
ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)

ADAM optimiser.

source