Merge remote-tracking branch 'upstream/master' into drop_shape
This commit is contained in:
commit
2fc2a5282c
|
@ -0,0 +1,37 @@
|
|||
before_script:
|
||||
- export CI_DISABLE_CURNN_TEST=true
|
||||
|
||||
variables:
|
||||
CI_IMAGE_TAG: 'cuda'
|
||||
|
||||
include:
|
||||
- 'https://raw.githubusercontent.com/JuliaGPU/gitlab-ci/master/templates/v3/common.yml'
|
||||
|
||||
.flux:
|
||||
extends: .test
|
||||
script:
|
||||
- julia -e 'using InteractiveUtils;
|
||||
versioninfo()'
|
||||
- mkdir $JULIA_DEPOT_PATH # Pkg3.jl#325
|
||||
- julia -e 'using Pkg;
|
||||
Pkg.add("CuArrays");'
|
||||
- julia --project -e 'using Pkg;
|
||||
Pkg.instantiate();
|
||||
Pkg.build();
|
||||
Pkg.test(; coverage=true);'
|
||||
|
||||
test:v1.0:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.0'
|
||||
only:
|
||||
- staging
|
||||
- trying
|
||||
|
||||
test:v1.1:
|
||||
extends: .flux
|
||||
variables:
|
||||
CI_VERSION_TAG: 'v1.1'
|
||||
only:
|
||||
- staging
|
||||
- trying
|
|
@ -23,3 +23,7 @@ jobs:
|
|||
Pkg.instantiate()'
|
||||
- julia --project=docs/ docs/make.jl
|
||||
after_success: skip
|
||||
|
||||
## uncomment the following lines to override the default test script
|
||||
script:
|
||||
- julia --color=yes -e 'using Pkg; Pkg.activate(); Pkg.instantiate(); Pkg.test()'
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
@article{Flux.jl-2018,
|
||||
author = {Michael Innes and
|
||||
Elliot Saba and
|
||||
Keno Fischer and
|
||||
Dhairya Gandhi and
|
||||
Marco Concetto Rudilosso and
|
||||
Neethu Mariya Joy and
|
||||
Tejan Karmali and
|
||||
Avik Pal and
|
||||
Viral Shah},
|
||||
title = {Fashionable Modelling with Flux},
|
||||
journal = {CoRR},
|
||||
volume = {abs/1811.01457},
|
||||
year = {2018},
|
||||
url = {http://arxiv.org/abs/1811.01457},
|
||||
archivePrefix = {arXiv},
|
||||
eprint = {1811.01457},
|
||||
timestamp = {Thu, 22 Nov 2018 17:58:30 +0100},
|
||||
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1811-01457},
|
||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||
}
|
||||
|
||||
@article{innes:2018,
|
||||
author = {Mike Innes},
|
||||
title = {Flux: Elegant Machine Learning with Julia},
|
||||
journal = {Journal of Open Source Software},
|
||||
year = {2018},
|
||||
doi = {10.21105/joss.00602},
|
||||
}
|
|
@ -1,6 +1,6 @@
|
|||
The Flux.jl package is licensed under the MIT "Expat" License:
|
||||
|
||||
> Copyright (c) 2016: Mike Innes.
|
||||
> Copyright (c) 2016-19: Julia Computing, INc., Mike Innes and Contributors
|
||||
>
|
||||
> Permission is hereby granted, free of charge, to any person obtaining
|
||||
> a copy of this software and associated documentation files (the
|
||||
|
|
|
@ -27,11 +27,17 @@ git-tree-sha1 = "055eb2690182ebc31087859c3dd8598371d3ef9e"
|
|||
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
|
||||
version = "0.5.3"
|
||||
|
||||
[[CSTParser]]
|
||||
deps = ["LibGit2", "Test", "Tokenize"]
|
||||
git-tree-sha1 = "437c93bc191cd55957b3f8dee7794b6131997c56"
|
||||
uuid = "00ebfdb7-1f24-5e51-bd34-a7502290713f"
|
||||
version = "0.5.2"
|
||||
|
||||
[[CodecZlib]]
|
||||
deps = ["BinaryProvider", "Libdl", "Test", "TranscodingStreams"]
|
||||
git-tree-sha1 = "e3df104c84dfc108f0ca203fd7f5bbdc98641ae9"
|
||||
git-tree-sha1 = "36bbf5374c661054d41410dc53ff752972583b9b"
|
||||
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
|
||||
[[ColorTypes]]
|
||||
deps = ["FixedPointNumbers", "Random", "Test"]
|
||||
|
@ -53,9 +59,15 @@ version = "0.2.0"
|
|||
|
||||
[[Compat]]
|
||||
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
|
||||
git-tree-sha1 = "ec61a16eed883ad0cfa002d7489b3ce6d039bb9a"
|
||||
git-tree-sha1 = "84aa74986c5b9b898b0d1acaf3258741ee64754f"
|
||||
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
|
||||
version = "1.4.0"
|
||||
version = "2.1.0"
|
||||
|
||||
[[Crayons]]
|
||||
deps = ["Test"]
|
||||
git-tree-sha1 = "f621b8ef51fd2004c7cf157ea47f027fdeac5523"
|
||||
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
|
||||
version = "4.0.0"
|
||||
|
||||
[[DataStructures]]
|
||||
deps = ["InteractiveUtils", "OrderedCollections", "Random", "Serialization", "Test"]
|
||||
|
@ -73,15 +85,15 @@ uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
|||
|
||||
[[DiffResults]]
|
||||
deps = ["Compat", "StaticArrays"]
|
||||
git-tree-sha1 = "db8acf46717b13d6c48deb7a12007c7f85a70cf7"
|
||||
git-tree-sha1 = "34a4a1e8be7bc99bc9c611b895b5baf37a80584c"
|
||||
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
|
||||
version = "0.0.3"
|
||||
version = "0.0.4"
|
||||
|
||||
[[DiffRules]]
|
||||
deps = ["Random", "Test"]
|
||||
git-tree-sha1 = "c49ec69428ffea0c1d1bbdc63d1a70f5df5860ad"
|
||||
git-tree-sha1 = "dc0869fb2f5b23466b32ea799bd82c76480167f7"
|
||||
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
|
||||
version = "0.0.7"
|
||||
version = "0.0.10"
|
||||
|
||||
[[Distributed]]
|
||||
deps = ["Random", "Serialization", "Sockets"]
|
||||
|
@ -95,9 +107,9 @@ version = "0.5.3"
|
|||
|
||||
[[ForwardDiff]]
|
||||
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "InteractiveUtils", "LinearAlgebra", "NaNMath", "Random", "SparseArrays", "SpecialFunctions", "StaticArrays", "Test"]
|
||||
git-tree-sha1 = "e393bd3b9102659fb24fe88caedec41f2bc2e7de"
|
||||
git-tree-sha1 = "4c4d727f1b7e0092134fabfab6396b8945c1ea5b"
|
||||
uuid = "f6369f11-7733-5829-9624-2563aa707210"
|
||||
version = "0.10.2"
|
||||
version = "0.10.3"
|
||||
|
||||
[[InteractiveUtils]]
|
||||
deps = ["Markdown"]
|
||||
|
@ -105,9 +117,9 @@ uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
|
|||
|
||||
[[Juno]]
|
||||
deps = ["Base64", "Logging", "Media", "Profile", "Test"]
|
||||
git-tree-sha1 = "ce6246e19061e36cbdce954caaae717498daeed8"
|
||||
git-tree-sha1 = "4e4a8d43aa7ecec66cadaf311fbd1e5c9d7b9175"
|
||||
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
|
||||
version = "0.5.4"
|
||||
version = "0.7.0"
|
||||
|
||||
[[LibGit2]]
|
||||
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
|
||||
|
@ -123,10 +135,10 @@ uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
|||
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
||||
|
||||
[[MacroTools]]
|
||||
deps = ["Compat"]
|
||||
git-tree-sha1 = "c443e1c8d58a4e9f61b708ad0a88286c7042145b"
|
||||
deps = ["CSTParser", "Compat", "DataStructures", "Test"]
|
||||
git-tree-sha1 = "daecd9e452f38297c686eba90dba2a6d5da52162"
|
||||
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
|
||||
version = "0.4.4"
|
||||
version = "0.5.0"
|
||||
|
||||
[[Markdown]]
|
||||
deps = ["Base64"]
|
||||
|
@ -148,10 +160,10 @@ version = "0.4.0"
|
|||
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
|
||||
|
||||
[[NNlib]]
|
||||
deps = ["Libdl", "LinearAlgebra", "MacroTools", "Requires", "Test"]
|
||||
git-tree-sha1 = "51330bb45927379007e089997bf548fbe232589d"
|
||||
deps = ["Libdl", "LinearAlgebra", "Requires", "Statistics", "TimerOutputs"]
|
||||
git-tree-sha1 = "0c667371391fc6bb31f7f12f96a56a17098b3de8"
|
||||
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
|
||||
version = "0.4.3"
|
||||
version = "0.6.0"
|
||||
|
||||
[[NaNMath]]
|
||||
deps = ["Compat"]
|
||||
|
@ -161,9 +173,9 @@ version = "0.3.2"
|
|||
|
||||
[[OrderedCollections]]
|
||||
deps = ["Random", "Serialization", "Test"]
|
||||
git-tree-sha1 = "85619a3f3e17bb4761fe1b1fd47f0e979f964d5b"
|
||||
git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1"
|
||||
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||
version = "1.0.2"
|
||||
version = "1.1.0"
|
||||
|
||||
[[Pkg]]
|
||||
deps = ["Dates", "LibGit2", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
|
||||
|
@ -228,29 +240,47 @@ version = "0.7.2"
|
|||
|
||||
[[StaticArrays]]
|
||||
deps = ["InteractiveUtils", "LinearAlgebra", "Random", "Statistics", "Test"]
|
||||
git-tree-sha1 = "1eb114d6e23a817cd3e99abc3226190876d7c898"
|
||||
git-tree-sha1 = "3841b39ed5f047db1162627bf5f80a9cd3e39ae2"
|
||||
uuid = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
version = "0.10.2"
|
||||
version = "0.10.3"
|
||||
|
||||
[[Statistics]]
|
||||
deps = ["LinearAlgebra", "SparseArrays"]
|
||||
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
|
||||
[[StatsBase]]
|
||||
deps = ["DataStructures", "DelimitedFiles", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "Test"]
|
||||
git-tree-sha1 = "7b596062316c7d846b67bf625d5963a832528598"
|
||||
deps = ["DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics"]
|
||||
git-tree-sha1 = "8a0f4b09c7426478ab677245ab2b0b68552143c7"
|
||||
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
|
||||
version = "0.27.0"
|
||||
version = "0.30.0"
|
||||
|
||||
[[Test]]
|
||||
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
|
||||
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[[TimerOutputs]]
|
||||
deps = ["Crayons", "Printf", "Test", "Unicode"]
|
||||
git-tree-sha1 = "b80671c06f8f8bae08c55d67b5ce292c5ae2660c"
|
||||
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||
version = "0.5.0"
|
||||
|
||||
[[Tokenize]]
|
||||
deps = ["Printf", "Test"]
|
||||
git-tree-sha1 = "3e83f60b74911d3042d3550884ca2776386a02b8"
|
||||
uuid = "0796e94c-ce3b-5d07-9a54-7f471281c624"
|
||||
version = "0.5.3"
|
||||
|
||||
[[Tracker]]
|
||||
deps = ["Adapt", "DiffRules", "ForwardDiff", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Printf", "Random", "Requires", "SpecialFunctions", "Statistics", "Test"]
|
||||
git-tree-sha1 = "0bec1b68c63a0e8a58d3944261cbf4cc9577c8a1"
|
||||
uuid = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
|
||||
version = "0.2.0"
|
||||
|
||||
[[TranscodingStreams]]
|
||||
deps = ["Pkg", "Random", "Test"]
|
||||
git-tree-sha1 = "a34a2d588e2d2825602bf14a24216d5c8b0921ec"
|
||||
deps = ["Random", "Test"]
|
||||
git-tree-sha1 = "a25d8e5a28c3b1b06d3859f30757d43106791919"
|
||||
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
|
||||
version = "0.8.1"
|
||||
version = "0.9.4"
|
||||
|
||||
[[URIParser]]
|
||||
deps = ["Test", "Unicode"]
|
||||
|
@ -267,6 +297,6 @@ uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
|
|||
|
||||
[[ZipFile]]
|
||||
deps = ["BinaryProvider", "Libdl", "Printf", "Test"]
|
||||
git-tree-sha1 = "4000c633efe994b2e10b31b6d91382c4b7412dac"
|
||||
git-tree-sha1 = "5f6f663890dfb9bad6af75a86a43f67904e5050e"
|
||||
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
version = "0.8.0"
|
||||
version = "0.8.1"
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
# v0.8.0
|
||||
|
||||
* New [ConvTranspose layer](https://github.com/FluxML/Flux.jl/pull/311).
|
||||
* New [Maxout layer](https://github.com/FluxML/Flux.jl/pull/647)
|
||||
* Datasets are now [hash verified on download](https://github.com/FluxML/Flux.jl/pull/585) to avoid corruption.
|
||||
* We now [zero the initial state for RNNs](https://github.com/FluxML/Flux.jl/pull/590/).
|
||||
* [Normalisation can now work on arbitrary `dims`.](https://github.com/FluxML/Flux.jl/pull/592)
|
||||
* Many docs and bugfixes thanks to @KristofferC and others.
|
||||
* [NamedTuples now work like Tuples](https://github.com/FluxML/Flux.jl/pull/603) when doing `mapleaves`.
|
||||
* New "performance tips" [section of the docs](https://github.com/FluxML/Flux.jl/pull/615).
|
||||
* The training loop is [now more readable](https://github.com/FluxML/Flux.jl/pull/651) and better shows how to use the lower-level APIs.
|
||||
* New [AlphaDropout](https://github.com/FluxML/Flux.jl/pull/656).
|
||||
* [Data.Iris](https://github.com/FluxML/Flux.jl/pull/652) makes Fisher's Iris dataset available with `Iris.labels` and `Iris.features`.
|
||||
* New [InstanceNorm](https://github.com/FluxML/Flux.jl/pull/634), as popularized by [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
|
||||
* New [GroupNorm](https://github.com/FluxML/Flux.jl/pull/696), as described in [Group Normalization](https://arxiv.org/abs/1803.08494).
|
||||
|
||||
AD Changes:
|
||||
|
||||
* `det`, `logdet` and `logabsdet` [now have adjoints](https://github.com/FluxML/Flux.jl/pull/596/files).
|
||||
* Support for [PermuteDimsArray](https://github.com/FluxML/Flux.jl/pull/576).
|
||||
* Flux.Tracker is now its [own package](https://github.com/FluxML/Tracker.jl), in preparation for replacing it with Zygote.
|
||||
|
||||
# v0.7.0
|
||||
|
||||
Despite the heroic efforts of scholars and archeologists, pre-0.7 history is lost to the sands of time.
|
20
Project.toml
20
Project.toml
|
@ -1,25 +1,35 @@
|
|||
name = "Flux"
|
||||
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
|
||||
version = "0.8.3"
|
||||
|
||||
[deps]
|
||||
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
|
||||
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
|
||||
CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193"
|
||||
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
|
||||
DiffRules = "b552c78f-8df3-52c6-915a-8e097449b14b"
|
||||
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
|
||||
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
||||
Juno = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
|
||||
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
|
||||
NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
|
||||
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
|
||||
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
||||
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
||||
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
|
||||
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
|
||||
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
|
||||
SHA = "ea8e919c-243c-51af-8825-aaa63cd721ce"
|
||||
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
|
||||
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
|
||||
[compat]
|
||||
NNlib = "0.6"
|
||||
Tracker = "0.2"
|
||||
julia = "0.7, 1"
|
||||
|
||||
[extras]
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[targets]
|
||||
test = ["Test"]
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
<img width="400px" src="https://raw.githubusercontent.com/FluxML/fluxml.github.io/master/logo.png"/>
|
||||
</p>
|
||||
|
||||
[](https://travis-ci.org/FluxML/Flux.jl) [](https://fluxml.github.io/Flux.jl/stable/) [](https://slackinvite.julialang.org/) [](https://doi.org/10.21105/joss.00602)
|
||||
[](https://travis-ci.org/FluxML/Flux.jl) [](https://fluxml.github.io/Flux.jl/stable/) [](https://slackinvite.julialang.org/) [](https://doi.org/10.21105/joss.00602)
|
||||
|
||||
Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable.
|
||||
|
||||
|
@ -10,7 +10,7 @@ Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, a
|
|||
julia> Pkg.add("Flux")
|
||||
```
|
||||
|
||||
See the [documentation](http://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
|
||||
See the [documentation](https://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
|
||||
|
||||
If you use Flux in research, please cite the following paper:
|
||||
|
||||
|
|
7
REQUIRE
7
REQUIRE
|
@ -10,9 +10,4 @@ ZipFile
|
|||
AbstractTrees
|
||||
Reexport
|
||||
StatsBase
|
||||
|
||||
# AD
|
||||
ForwardDiff 0.5.0
|
||||
DiffRules
|
||||
SpecialFunctions
|
||||
NaNMath
|
||||
Tracker
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# This file is machine-generated - editing it directly is not advised
|
||||
|
||||
[[AbstractTrees]]
|
||||
deps = ["Markdown", "Test"]
|
||||
git-tree-sha1 = "6621d9645702c1c4e6970cc6a3eae440c768000b"
|
||||
|
@ -6,9 +8,9 @@ version = "0.2.1"
|
|||
|
||||
[[Adapt]]
|
||||
deps = ["LinearAlgebra", "Test"]
|
||||
git-tree-sha1 = "04d15700419b6949d76be1428ab6e0277ff43b06"
|
||||
git-tree-sha1 = "53d8fec4f662088c1202530e338a11a919407f3b"
|
||||
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
|
||||
version = "0.4.1"
|
||||
version = "0.4.2"
|
||||
|
||||
[[Base64]]
|
||||
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
|
||||
|
@ -25,11 +27,17 @@ git-tree-sha1 = "055eb2690182ebc31087859c3dd8598371d3ef9e"
|
|||
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
|
||||
version = "0.5.3"
|
||||
|
||||
[[CSTParser]]
|
||||
deps = ["LibGit2", "Test", "Tokenize"]
|
||||
git-tree-sha1 = "437c93bc191cd55957b3f8dee7794b6131997c56"
|
||||
uuid = "00ebfdb7-1f24-5e51-bd34-a7502290713f"
|
||||
version = "0.5.2"
|
||||
|
||||
[[CodecZlib]]
|
||||
deps = ["BinaryProvider", "Libdl", "Test", "TranscodingStreams"]
|
||||
git-tree-sha1 = "e3df104c84dfc108f0ca203fd7f5bbdc98641ae9"
|
||||
git-tree-sha1 = "36bbf5374c661054d41410dc53ff752972583b9b"
|
||||
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
|
||||
version = "0.5.1"
|
||||
version = "0.5.2"
|
||||
|
||||
[[ColorTypes]]
|
||||
deps = ["FixedPointNumbers", "Random", "Test"]
|
||||
|
@ -51,9 +59,15 @@ version = "0.2.0"
|
|||
|
||||
[[Compat]]
|
||||
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
|
||||
git-tree-sha1 = "ec61a16eed883ad0cfa002d7489b3ce6d039bb9a"
|
||||
git-tree-sha1 = "84aa74986c5b9b898b0d1acaf3258741ee64754f"
|
||||
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
|
||||
version = "1.4.0"
|
||||
version = "2.1.0"
|
||||
|
||||
[[Crayons]]
|
||||
deps = ["Test"]
|
||||
git-tree-sha1 = "f621b8ef51fd2004c7cf157ea47f027fdeac5523"
|
||||
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
|
||||
version = "4.0.0"
|
||||
|
||||
[[DataStructures]]
|
||||
deps = ["InteractiveUtils", "OrderedCollections", "Random", "Serialization", "Test"]
|
||||
|
@ -71,31 +85,31 @@ uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
|||
|
||||
[[DiffResults]]
|
||||
deps = ["Compat", "StaticArrays"]
|
||||
git-tree-sha1 = "db8acf46717b13d6c48deb7a12007c7f85a70cf7"
|
||||
git-tree-sha1 = "34a4a1e8be7bc99bc9c611b895b5baf37a80584c"
|
||||
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
|
||||
version = "0.0.3"
|
||||
version = "0.0.4"
|
||||
|
||||
[[DiffRules]]
|
||||
deps = ["Random", "Test"]
|
||||
git-tree-sha1 = "c49ec69428ffea0c1d1bbdc63d1a70f5df5860ad"
|
||||
git-tree-sha1 = "dc0869fb2f5b23466b32ea799bd82c76480167f7"
|
||||
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
|
||||
version = "0.0.7"
|
||||
version = "0.0.10"
|
||||
|
||||
[[Distributed]]
|
||||
deps = ["LinearAlgebra", "Random", "Serialization", "Sockets"]
|
||||
deps = ["Random", "Serialization", "Sockets"]
|
||||
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
||||
|
||||
[[DocStringExtensions]]
|
||||
deps = ["LibGit2", "Markdown", "Pkg", "Test"]
|
||||
git-tree-sha1 = "1df01539a1c952cef21f2d2d1c092c2bcf0177d7"
|
||||
git-tree-sha1 = "4d30e889c9f106a51ffa4791a88ffd4765bf20c3"
|
||||
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
|
||||
version = "0.6.0"
|
||||
version = "0.7.0"
|
||||
|
||||
[[Documenter]]
|
||||
deps = ["Base64", "DocStringExtensions", "InteractiveUtils", "LibGit2", "Logging", "Markdown", "Pkg", "REPL", "Random", "Test", "Unicode"]
|
||||
git-tree-sha1 = "a6db1c69925cdc53aafb38caec4446be26e0c617"
|
||||
deps = ["Base64", "DocStringExtensions", "InteractiveUtils", "JSON", "LibGit2", "Logging", "Markdown", "Pkg", "REPL", "Random", "Test", "Unicode"]
|
||||
git-tree-sha1 = "13a6d15102410d8e70146533b759fc48d844a1d0"
|
||||
uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
|
||||
version = "0.21.0"
|
||||
version = "0.22.3"
|
||||
|
||||
[[FixedPointNumbers]]
|
||||
deps = ["Test"]
|
||||
|
@ -104,26 +118,32 @@ uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
|
|||
version = "0.5.3"
|
||||
|
||||
[[Flux]]
|
||||
deps = ["AbstractTrees", "Adapt", "CodecZlib", "Colors", "DiffRules", "ForwardDiff", "Juno", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Printf", "Random", "Reexport", "Requires", "SpecialFunctions", "Statistics", "StatsBase", "Test", "ZipFile"]
|
||||
deps = ["AbstractTrees", "Adapt", "CodecZlib", "Colors", "DelimitedFiles", "Juno", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SHA", "Statistics", "StatsBase", "Tracker", "ZipFile"]
|
||||
path = ".."
|
||||
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
|
||||
version = "0.6.10+"
|
||||
version = "0.8.2+"
|
||||
|
||||
[[ForwardDiff]]
|
||||
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "InteractiveUtils", "LinearAlgebra", "NaNMath", "Random", "SparseArrays", "SpecialFunctions", "StaticArrays", "Test"]
|
||||
git-tree-sha1 = "b91250044374764e7c29af59a774c4b8d6100b6e"
|
||||
git-tree-sha1 = "4c4d727f1b7e0092134fabfab6396b8945c1ea5b"
|
||||
uuid = "f6369f11-7733-5829-9624-2563aa707210"
|
||||
version = "0.10.1"
|
||||
version = "0.10.3"
|
||||
|
||||
[[InteractiveUtils]]
|
||||
deps = ["LinearAlgebra", "Markdown"]
|
||||
deps = ["Markdown"]
|
||||
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
|
||||
|
||||
[[JSON]]
|
||||
deps = ["Dates", "Distributed", "Mmap", "Sockets", "Test", "Unicode"]
|
||||
git-tree-sha1 = "1f7a25b53ec67f5e9422f1f551ee216503f4a0fa"
|
||||
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||
version = "0.20.0"
|
||||
|
||||
[[Juno]]
|
||||
deps = ["Base64", "Logging", "Media", "Profile", "Test"]
|
||||
git-tree-sha1 = "3c29a199713e7ec62cfdc11f44d7760219d5f658"
|
||||
git-tree-sha1 = "4e4a8d43aa7ecec66cadaf311fbd1e5c9d7b9175"
|
||||
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
|
||||
version = "0.5.3"
|
||||
version = "0.7.0"
|
||||
|
||||
[[LibGit2]]
|
||||
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
|
||||
|
@ -139,10 +159,10 @@ uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
|||
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
||||
|
||||
[[MacroTools]]
|
||||
deps = ["Compat"]
|
||||
git-tree-sha1 = "c443e1c8d58a4e9f61b708ad0a88286c7042145b"
|
||||
deps = ["CSTParser", "Compat", "DataStructures", "Test"]
|
||||
git-tree-sha1 = "daecd9e452f38297c686eba90dba2a6d5da52162"
|
||||
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
|
||||
version = "0.4.4"
|
||||
version = "0.5.0"
|
||||
|
||||
[[Markdown]]
|
||||
deps = ["Base64"]
|
||||
|
@ -156,18 +176,18 @@ version = "0.5.0"
|
|||
|
||||
[[Missings]]
|
||||
deps = ["Dates", "InteractiveUtils", "SparseArrays", "Test"]
|
||||
git-tree-sha1 = "adc26d2ee85a49c413464110d922cf21efc9d233"
|
||||
git-tree-sha1 = "d1d2585677f2bd93a97cfeb8faa7a0de0f982042"
|
||||
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
|
||||
version = "0.3.1"
|
||||
version = "0.4.0"
|
||||
|
||||
[[Mmap]]
|
||||
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
|
||||
|
||||
[[NNlib]]
|
||||
deps = ["Libdl", "LinearAlgebra", "MacroTools", "Requires", "Test"]
|
||||
git-tree-sha1 = "51330bb45927379007e089997bf548fbe232589d"
|
||||
deps = ["Libdl", "LinearAlgebra", "Requires", "Statistics", "TimerOutputs"]
|
||||
git-tree-sha1 = "0c667371391fc6bb31f7f12f96a56a17098b3de8"
|
||||
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
|
||||
version = "0.4.3"
|
||||
version = "0.6.0"
|
||||
|
||||
[[NaNMath]]
|
||||
deps = ["Compat"]
|
||||
|
@ -177,9 +197,9 @@ version = "0.3.2"
|
|||
|
||||
[[OrderedCollections]]
|
||||
deps = ["Random", "Serialization", "Test"]
|
||||
git-tree-sha1 = "85619a3f3e17bb4761fe1b1fd47f0e979f964d5b"
|
||||
git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1"
|
||||
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||
version = "1.0.2"
|
||||
version = "1.1.0"
|
||||
|
||||
[[Pkg]]
|
||||
deps = ["Dates", "LibGit2", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
|
||||
|
@ -244,29 +264,47 @@ version = "0.7.2"
|
|||
|
||||
[[StaticArrays]]
|
||||
deps = ["InteractiveUtils", "LinearAlgebra", "Random", "Statistics", "Test"]
|
||||
git-tree-sha1 = "1eb114d6e23a817cd3e99abc3226190876d7c898"
|
||||
git-tree-sha1 = "3841b39ed5f047db1162627bf5f80a9cd3e39ae2"
|
||||
uuid = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
version = "0.10.2"
|
||||
version = "0.10.3"
|
||||
|
||||
[[Statistics]]
|
||||
deps = ["LinearAlgebra", "SparseArrays"]
|
||||
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
|
||||
[[StatsBase]]
|
||||
deps = ["DataStructures", "DelimitedFiles", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "Test"]
|
||||
git-tree-sha1 = "7b596062316c7d846b67bf625d5963a832528598"
|
||||
deps = ["DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics"]
|
||||
git-tree-sha1 = "8a0f4b09c7426478ab677245ab2b0b68552143c7"
|
||||
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
|
||||
version = "0.27.0"
|
||||
version = "0.30.0"
|
||||
|
||||
[[Test]]
|
||||
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
|
||||
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[[TimerOutputs]]
|
||||
deps = ["Crayons", "Printf", "Test", "Unicode"]
|
||||
git-tree-sha1 = "b80671c06f8f8bae08c55d67b5ce292c5ae2660c"
|
||||
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||
version = "0.5.0"
|
||||
|
||||
[[Tokenize]]
|
||||
deps = ["Printf", "Test"]
|
||||
git-tree-sha1 = "3e83f60b74911d3042d3550884ca2776386a02b8"
|
||||
uuid = "0796e94c-ce3b-5d07-9a54-7f471281c624"
|
||||
version = "0.5.3"
|
||||
|
||||
[[Tracker]]
|
||||
deps = ["Adapt", "DiffRules", "ForwardDiff", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Printf", "Random", "Requires", "SpecialFunctions", "Statistics", "Test"]
|
||||
git-tree-sha1 = "0bec1b68c63a0e8a58d3944261cbf4cc9577c8a1"
|
||||
uuid = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
|
||||
version = "0.2.0"
|
||||
|
||||
[[TranscodingStreams]]
|
||||
deps = ["Pkg", "Random", "Test"]
|
||||
git-tree-sha1 = "a34a2d588e2d2825602bf14a24216d5c8b0921ec"
|
||||
deps = ["Random", "Test"]
|
||||
git-tree-sha1 = "a25d8e5a28c3b1b06d3859f30757d43106791919"
|
||||
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
|
||||
version = "0.8.1"
|
||||
version = "0.9.4"
|
||||
|
||||
[[URIParser]]
|
||||
deps = ["Test", "Unicode"]
|
||||
|
@ -275,7 +313,7 @@ uuid = "30578b45-9adc-5946-b283-645ec420af67"
|
|||
version = "0.4.0"
|
||||
|
||||
[[UUIDs]]
|
||||
deps = ["Random"]
|
||||
deps = ["Random", "SHA"]
|
||||
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
|
||||
|
||||
[[Unicode]]
|
||||
|
@ -283,6 +321,6 @@ uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
|
|||
|
||||
[[ZipFile]]
|
||||
deps = ["BinaryProvider", "Libdl", "Printf", "Test"]
|
||||
git-tree-sha1 = "4000c633efe994b2e10b31b6d91382c4b7412dac"
|
||||
git-tree-sha1 = "5f6f663890dfb9bad6af75a86a43f67904e5050e"
|
||||
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
version = "0.8.0"
|
||||
version = "0.8.1"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
using Documenter, Flux, NNlib
|
||||
|
||||
makedocs(modules=[Flux, NNlib],
|
||||
doctest = false,
|
||||
doctest = true,
|
||||
analytics = "UA-36890222-9",
|
||||
sitename = "Flux",
|
||||
# Uncomment below for local build
|
||||
|
@ -19,6 +19,7 @@ makedocs(modules=[Flux, NNlib],
|
|||
"One-Hot Encoding" => "data/onehot.md",
|
||||
"GPU Support" => "gpu.md",
|
||||
"Saving & Loading" => "saving.md",
|
||||
"Performance Tips" => "performance.md",
|
||||
"Internals" =>
|
||||
["Backpropagation" => "internals/tracker.md"],
|
||||
"Community" => "community.md"])
|
||||
|
|
|
@ -1,5 +1,17 @@
|
|||
# GPU Support
|
||||
|
||||
## Installation
|
||||
|
||||
To get GPU support for NVIDIA graphics cards, you need to install `CuArrays.jl`
|
||||
|
||||
**Steps needed**
|
||||
|
||||
1. Install [NVIDIA toolkit](https://developer.nvidia.com/cuda-downloads)
|
||||
2. Install [NVIDIA cuDNN library](https://developer.nvidia.com/cudnn)
|
||||
3. In Julia's terminal run `]add CuArrays`
|
||||
|
||||
## GPU Usage
|
||||
|
||||
Support for array operations on other hardware backends, like GPUs, is provided by external packages like [CuArrays](https://github.com/JuliaGPU/CuArrays.jl). Flux is agnostic to array types, so we simply need to move model weights and data to the GPU and Flux will handle it.
|
||||
|
||||
For example, we can use `CuArrays` (with the `cu` converter) to run our [basic example](models/basics.md) on an NVIDIA GPU.
|
||||
|
|
|
@ -4,49 +4,56 @@
|
|||
|
||||
Flux's core feature is taking gradients of Julia code. The `gradient` function takes another Julia function `f` and a set of arguments, and returns the gradient with respect to each argument. (It's a good idea to try pasting these examples in the Julia terminal.)
|
||||
|
||||
```julia
|
||||
using Flux.Tracker
|
||||
```jldoctest basics
|
||||
julia> using Flux.Tracker
|
||||
|
||||
f(x) = 3x^2 + 2x + 1
|
||||
julia> f(x) = 3x^2 + 2x + 1;
|
||||
|
||||
# df/dx = 6x + 2
|
||||
df(x) = Tracker.gradient(f, x)[1]
|
||||
julia> df(x) = Tracker.gradient(f, x; nest = true)[1]; # df/dx = 6x + 2
|
||||
|
||||
df(2) # 14.0 (tracked)
|
||||
julia> df(2)
|
||||
14.0 (tracked)
|
||||
|
||||
# d²f/dx² = 6
|
||||
d2f(x) = Tracker.gradient(df, x)[1]
|
||||
julia> d2f(x) = Tracker.gradient(df, x; nest = true)[1]; # d²f/dx² = 6
|
||||
|
||||
d2f(2) # 6.0 (tracked)
|
||||
julia> d2f(2)
|
||||
6.0 (tracked)
|
||||
```
|
||||
|
||||
(We'll learn more about why these numbers show up as `(tracked)` below.)
|
||||
|
||||
When a function has many parameters, we can pass them all in explicitly:
|
||||
|
||||
```julia
|
||||
f(W, b, x) = W * x + b
|
||||
```jldoctest basics
|
||||
julia> f(W, b, x) = W * x + b;
|
||||
|
||||
Tracker.gradient(f, 2, 3, 4)
|
||||
(4.0 (tracked), 1.0, 2.0 (tracked))
|
||||
julia> Tracker.gradient(f, 2, 3, 4)
|
||||
(4.0 (tracked), 1.0 (tracked), 2.0 (tracked))
|
||||
```
|
||||
|
||||
But machine learning models can have *hundreds* of parameters! Flux offers a nice way to handle this. We can tell Flux to treat something as a parameter via `param`. Then we can collect these together and tell `gradient` to collect the gradients of all of them at once.
|
||||
But machine learning models can have *hundreds* of parameters! Flux offers a nice way to handle this. We can tell Flux to treat something as a parameter via `param`. Then we can collect these together and tell `gradient` to collect the gradients of all `params` at once.
|
||||
|
||||
```julia
|
||||
W = param(2) # 2.0 (tracked)
|
||||
b = param(3) # 3.0 (tracked)
|
||||
```jldoctest basics
|
||||
julia> using Flux
|
||||
|
||||
f(x) = W * x + b
|
||||
julia> W = param(2)
|
||||
2.0 (tracked)
|
||||
|
||||
params = Params([W, b])
|
||||
grads = Tracker.gradient(() -> f(4), params)
|
||||
julia> b = param(3)
|
||||
3.0 (tracked)
|
||||
|
||||
grads[W] # 4.0
|
||||
grads[b] # 1.0
|
||||
julia> f(x) = W * x + b;
|
||||
|
||||
julia> grads = Tracker.gradient(() -> f(4), params(W, b));
|
||||
|
||||
julia> grads[W]
|
||||
4.0 (tracked)
|
||||
|
||||
julia> grads[b]
|
||||
1.0 (tracked)
|
||||
```
|
||||
|
||||
There are a few things to notice here. Firstly, `W` and `b` now show up as *tracked*. Tracked things behave like normal numbers or arrays, but keep records of everything you do with them, allowing Flux to calculate their gradients. `gradient` takes a zero-argument function; no arguments are necessary because the `Params` tell it what to differentiate.
|
||||
There are a few things to notice here. Firstly, `W` and `b` now show up as *tracked*. Tracked things behave like normal numbers or arrays, but keep records of everything you do with them, allowing Flux to calculate their gradients. `gradient` takes a zero-argument function; no arguments are necessary because the `params` tell it what to differentiate.
|
||||
|
||||
This will come in really handy when dealing with big, complicated models. For now, though, let's start with something simple.
|
||||
|
||||
|
@ -77,7 +84,7 @@ using Flux.Tracker
|
|||
W = param(W)
|
||||
b = param(b)
|
||||
|
||||
gs = Tracker.gradient(() -> loss(x, y), Params([W, b]))
|
||||
gs = Tracker.gradient(() -> loss(x, y), params(W, b))
|
||||
```
|
||||
|
||||
Now that we have gradients, we can pull them out and update `W` to train the model. The `update!(W, Δ)` function applies `W = W + Δ`, which we can use for gradient descent.
|
||||
|
@ -102,6 +109,8 @@ All deep learning in Flux, however complex, is a simple generalisation of this e
|
|||
It's common to create more complex models than the linear regression above. For example, we might want to have two linear layers with a nonlinearity like [sigmoid](https://en.wikipedia.org/wiki/Sigmoid_function) (`σ`) in between them. In the above style we could write this as:
|
||||
|
||||
```julia
|
||||
using Flux
|
||||
|
||||
W1 = param(rand(3, 5))
|
||||
b1 = param(rand(3))
|
||||
layer1(x) = W1 * x .+ b1
|
||||
|
|
|
@ -5,15 +5,18 @@ These core layers form the foundation of almost all neural networks.
|
|||
```@docs
|
||||
Chain
|
||||
Dense
|
||||
```
|
||||
|
||||
## Convolution and Pooling Layers
|
||||
|
||||
These layers are used to build convolutional neural networks (CNNs).
|
||||
|
||||
```@docs
|
||||
Conv
|
||||
MaxPool
|
||||
MeanPool
|
||||
```
|
||||
|
||||
## Additional Convolution Layers
|
||||
|
||||
```@docs
|
||||
DepthwiseConv
|
||||
ConvTranspose
|
||||
```
|
||||
|
||||
## Recurrent Layers
|
||||
|
@ -27,6 +30,14 @@ GRU
|
|||
Flux.Recur
|
||||
```
|
||||
|
||||
## Other General Purpose Layers
|
||||
These are marginally more obscure than the Basic Layers.
|
||||
But in contrast to the layers described in the other sections are not readily grouped around a particular purpose (e.g. CNNs or RNNs).
|
||||
|
||||
```@docs
|
||||
Maxout
|
||||
```
|
||||
|
||||
## Activation Functions
|
||||
|
||||
Non-linearities that go between layers of your model. Most of these functions are defined in [NNlib](https://github.com/FluxML/NNlib.jl) but are available by default in Flux.
|
||||
|
@ -49,5 +60,7 @@ These layers don't affect the structure of the network but may improve training
|
|||
Flux.testmode!
|
||||
BatchNorm
|
||||
Dropout
|
||||
AlphaDropout
|
||||
LayerNorm
|
||||
GroupNorm
|
||||
```
|
||||
|
|
|
@ -77,7 +77,7 @@ If you use the `RNN(10, 5)` constructor – as opposed to `RNNCell` – you'll s
|
|||
|
||||
```julia
|
||||
julia> RNN(10, 5)
|
||||
Recur(RNNCell(Dense(15, 5)))
|
||||
Recur(RNNCell(10, 5, tanh))
|
||||
```
|
||||
|
||||
## Sequences
|
||||
|
@ -114,3 +114,13 @@ truncate!(m)
|
|||
Calling `truncate!` wipes the slate clean, so we can call the model with more inputs without building up an expensive gradient computation.
|
||||
|
||||
`truncate!` makes sense when you are working with multiple chunks of a large sequence, but we may also want to work with a set of independent sequences. In this case the hidden state should be completely reset to its original value, throwing away any accumulated information. `reset!` does this for you.
|
||||
|
||||
In general, when training with recurrent layers in your model, you'll want to call `reset!` or `truncate!` for each loss calculation:
|
||||
|
||||
```julia
|
||||
function loss(x,y)
|
||||
l = Flux.mse(m(x), y)
|
||||
Flux.reset!(m)
|
||||
return l
|
||||
end
|
||||
```
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
# Performance Tips
|
||||
|
||||
All the usual [Julia performance tips apply](https://docs.julialang.org/en/v1/manual/performance-tips/).
|
||||
As always [profiling your code](https://docs.julialang.org/en/v1/manual/profile/#Profiling-1) is generally a useful way of finding bottlenecks.
|
||||
Below follow some Flux specific tips/reminders.
|
||||
|
||||
## Don't use more precision than you need.
|
||||
|
||||
Flux works great with all kinds of number types.
|
||||
But often you do not need to be working with say `Float64` (let alone `BigFloat`).
|
||||
Switching to `Float32` can give you a significant speed up,
|
||||
not because the operations are faster, but because the memory usage is halved.
|
||||
Which means allocations occur much faster.
|
||||
And you use less memory.
|
||||
|
||||
|
||||
## Make sure your custom activation functions preserve the type of their inputs
|
||||
Not only should your activation functions be [type-stable](https://docs.julialang.org/en/v1/manual/performance-tips/#Write-%22type-stable%22-functions-1),
|
||||
they should also preserve the type of their inputs.
|
||||
|
||||
A very artificial example using an activatioon function like
|
||||
|
||||
```
|
||||
my_tanh(x) = Float64(tanh(x))
|
||||
```
|
||||
|
||||
will result in performance on `Float32` input orders of magnitude slower than the normal `tanh` would,
|
||||
because it results in having to use slow mixed type multiplication in the dense layers.
|
||||
|
||||
Which means if you change your data say from `Float64` to `Float32` (which should give a speedup: see above),
|
||||
you will see a large slow-down
|
||||
|
||||
This can occur sneakily, because you can cause type-promotion by interacting with a numeric literals.
|
||||
E.g. the following will have run into the same problem as above:
|
||||
|
||||
```
|
||||
leaky_tanh(x) = 0.01x + tanh(x)
|
||||
```
|
||||
|
||||
While one could change your activation function (e.g. to use `0.01f0x`) to avoid this when ever your inputs change,
|
||||
the idiomatic (and safe way) is to use `oftype`.
|
||||
|
||||
```
|
||||
leaky_tanh(x) = oftype(x/1, 0.01) + tanh(x)
|
||||
```
|
||||
|
||||
|
||||
## Evaluate batches as Matrices of features, rather than sequences of Vector features
|
||||
|
||||
While it can sometimes be tempting to process your observations (feature vectors) one at a time
|
||||
e.g.
|
||||
```julia
|
||||
function loss_total(xs::AbstractVector{<:Vector}, ys::AbstractVector{<:Vector})
|
||||
sum(zip(xs, ys)) do (x, y_target)
|
||||
y_pred = model(x) # evaluate the model
|
||||
return loss(y_pred, y_target)
|
||||
end
|
||||
end
|
||||
```
|
||||
|
||||
It is much faster to concatenate them into a matrix,
|
||||
as this will hit BLAS matrix-matrix multiplication, which is much faster than the equivalent sequence of matrix-vector multiplications.
|
||||
Even though this means allocating new memory to store them contiguously.
|
||||
|
||||
```julia
|
||||
x_batch = reduce(hcat, xs)
|
||||
y_batch = reduce(hcat, ys)
|
||||
...
|
||||
function loss_total(x_batch::Matrix, y_batch::Matrix)
|
||||
y_preds = model(x_batch)
|
||||
sum(loss.(y_preds, y_batch))
|
||||
end
|
||||
```
|
||||
|
||||
When doing this kind of concatenation use `reduce(hcat, xs)` rather than `hcat(xs...)`.
|
||||
This will avoid the splatting penality, and will hit the optimised `reduce` method.
|
|
@ -3,7 +3,7 @@
|
|||
Consider a [simple linear regression](../models/basics.md). We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters `W` and `b`.
|
||||
|
||||
```julia
|
||||
using Flux.Tracker
|
||||
using Flux, Flux.Tracker
|
||||
|
||||
W = param(rand(2, 5))
|
||||
b = param(rand(2))
|
||||
|
@ -14,8 +14,8 @@ loss(x, y) = sum((predict(x) .- y).^2)
|
|||
x, y = rand(5), rand(2) # Dummy data
|
||||
l = loss(x, y) # ~ 3
|
||||
|
||||
params = Params([W, b])
|
||||
grads = Tracker.gradient(() -> loss(x, y), params)
|
||||
θ = Params([W, b])
|
||||
grads = Tracker.gradient(() -> loss(x, y), θ)
|
||||
```
|
||||
|
||||
We want to update each parameter, using the gradient, in order to improve (reduce) the loss. Here's one way to do that:
|
||||
|
@ -35,7 +35,7 @@ Running this will alter the parameters `W` and `b` and our loss should go down.
|
|||
opt = Descent(0.1) # Gradient descent with learning rate 0.1
|
||||
|
||||
for p in (W, b)
|
||||
update!(opt, p, -η * grads[p])
|
||||
update!(opt, p, grads[p])
|
||||
end
|
||||
```
|
||||
|
||||
|
@ -49,5 +49,12 @@ All optimisers return an object that, when passed to `train!`, will update the p
|
|||
Descent
|
||||
Momentum
|
||||
Nesterov
|
||||
RMSProp
|
||||
ADAM
|
||||
AdaMax
|
||||
ADAGrad
|
||||
ADADelta
|
||||
AMSGrad
|
||||
NADAM
|
||||
ADAMW
|
||||
```
|
||||
|
|
|
@ -93,3 +93,11 @@ evalcb() = @show(loss(test_x, test_y))
|
|||
Flux.train!(objective, ps, data, opt,
|
||||
cb = throttle(evalcb, 5))
|
||||
```
|
||||
|
||||
Calling `Flux.stop()` in a callback will exit the training loop early.
|
||||
|
||||
```julia
|
||||
cb = function ()
|
||||
accuracy() > 0.9 && Flux.stop()
|
||||
end
|
||||
```
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
journal = {arXiv},
|
||||
volume = {abs/11712.03112},
|
||||
year = {2017},
|
||||
url = {http://arxiv.org/abs/1712.03112},
|
||||
url = {https://arxiv.org/abs/1712.03112},
|
||||
}
|
||||
|
||||
@online{MLPL,
|
||||
|
@ -29,7 +29,7 @@
|
|||
author = {Mike Innes and others},
|
||||
title = {Generic GPU Kernels},
|
||||
year = 2017,
|
||||
url = {http://mikeinnes.github.io/2017/08/24/cudanative.html},
|
||||
url = {https://mikeinnes.github.io/2017/08/24/cudanative.html},
|
||||
urldate = {2018-02-16}
|
||||
}
|
||||
|
||||
|
|
11
src/Flux.jl
11
src/Flux.jl
|
@ -6,15 +6,14 @@ using Base: tail
|
|||
using MacroTools, Juno, Requires, Reexport, Statistics, Random
|
||||
using MacroTools: @forward
|
||||
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv, MaxPool, MeanPool,
|
||||
DepthwiseConv, Dropout, LayerNorm, BatchNorm,
|
||||
params, mapleaves, cpu, gpu
|
||||
export Chain, Dense, Maxout, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
|
||||
DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm,
|
||||
params, mapleaves, cpu, gpu, f32, f64
|
||||
|
||||
@reexport using NNlib
|
||||
|
||||
include("tracker/Tracker.jl")
|
||||
using .Tracker
|
||||
using .Tracker: data
|
||||
using Tracker
|
||||
using Tracker: data
|
||||
export Tracker, TrackedArray, TrackedVector, TrackedMatrix, param
|
||||
|
||||
include("optimise/Optimise.jl")
|
||||
|
|
|
@ -1,17 +1,18 @@
|
|||
module CUDA
|
||||
|
||||
using ..CuArrays
|
||||
import ..CuArrays.CUDAdrv: CuPtr, CU_NULL
|
||||
using Pkg.TOML
|
||||
|
||||
function version_check()
|
||||
minor_version = 9
|
||||
major_version = 1
|
||||
project = joinpath(dirname(pathof(CuArrays)), "../Project.toml")
|
||||
project = TOML.parse(String(read(project)))
|
||||
version = VersionNumber(get(project, "version", "0.0.0"))
|
||||
if !(version.major == 0 && version.minor == minor_version)
|
||||
if version.major != major_version
|
||||
@warn """
|
||||
Flux is only supported with CuArrays v0.$minor_version.
|
||||
Try running `] pin CuArrays@0.$minor_version`.
|
||||
Flux is only supported with CuArrays v$major_version.x.
|
||||
Try running `] pin CuArrays@$major_version`.
|
||||
"""
|
||||
end
|
||||
end
|
||||
|
|
|
@ -17,7 +17,7 @@ function DropoutDesc(ρ::Real; seed::Integer=0)
|
|||
@check ccall((:cudnnDropoutGetStatesSize,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Csize_t}),handle(),s)
|
||||
states = CuArray{UInt8}(undef, s[]) # TODO: can we drop this when ρ=0?
|
||||
desc = DropoutDesc(d[], states)
|
||||
@check ccall((:cudnnSetDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Nothing},Cfloat,Ptr{Nothing},Csize_t,Culonglong),
|
||||
@check ccall((:cudnnSetDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Nothing},Cfloat,CuPtr{Nothing},Csize_t,Culonglong),
|
||||
desc,handle(),ρ,states,length(states),seed)
|
||||
finalizer(desc) do x
|
||||
@check ccall((:cudnnDestroyDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x)
|
||||
|
@ -79,18 +79,18 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
|
|||
mean = zeros(CuArray{T}, dims...)
|
||||
ivar = ones(CuArray{T}, dims...)
|
||||
else
|
||||
mean = C_NULL
|
||||
ivar = C_NULL
|
||||
mean = CU_NULL
|
||||
ivar = CU_NULL
|
||||
end
|
||||
|
||||
@check ccall((:cudnnBatchNormalizationForwardTraining, libcudnn), cudnnStatus_t,
|
||||
(cudnnHandle_t,cudnnBatchNormMode_t,
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{T},
|
||||
Cdouble, Ptr{T}, Ptr{T},
|
||||
Cdouble, Ptr{T}, Ptr{T}),
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T}, CuPtr{T},
|
||||
Cdouble, CuPtr{T}, CuPtr{T},
|
||||
Cdouble, CuPtr{T}, CuPtr{T}),
|
||||
handle(), BATCHNORM_SPATIAL,
|
||||
Ref(T(alpha)), Ref(T(beta)),
|
||||
xd, x,
|
||||
|
@ -107,10 +107,10 @@ function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray
|
|||
@check ccall((:cudnnBatchNormalizationForwardInference, libcudnn), cudnnStatus_t,
|
||||
(Ptr{cudnnHandle_t},cudnnBatchNormMode_t,
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{T},
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T}, CuPtr{T},
|
||||
CuPtr{T}, CuPtr{T},
|
||||
Cdouble),
|
||||
handle(), BATCHNORM_SPATIAL,
|
||||
Ref(T(alpha)), Ref(T(beta)),
|
||||
|
@ -159,7 +159,7 @@ function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
|
|||
mean, ivar = cache.mean, cache.ivar
|
||||
info("mean and ivar are fetched from the cache")
|
||||
else
|
||||
mean, ivar = C_NULL, C_NULL
|
||||
mean, ivar = CU_NULL, CU_NULL
|
||||
end
|
||||
|
||||
if eps < BATCHNORM_MIN_EPS
|
||||
|
@ -170,11 +170,11 @@ function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
|
|||
(cudnnHandle_t,cudnnBatchNormMode_t,
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{T}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{T}, Ptr{T},
|
||||
Cdouble, Ptr{T}, Ptr{T}),
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T}, CuPtr{T}, CuPtr{T},
|
||||
Cdouble, CuPtr{T}, CuPtr{T}),
|
||||
handle(), BATCHNORM_SPATIAL,
|
||||
Ref(T(alpha)), Ref(T(beta)),
|
||||
Ref(T(dalpha)), Ref(T(dbeta)),
|
||||
|
@ -194,7 +194,7 @@ end
|
|||
# Flux Interface
|
||||
|
||||
(BN::Flux.BatchNorm)(x::Union{CuParam{T,2},CuParam{T,4},CuParam{T,5}}, cache = nothing) where T<:Union{Float32, Float64} =
|
||||
batchnorm(BN.γ, BN.β, x, BN.μ, BN.σ², BN.momentum; cache = cache, alpha = 1, beta = 0, eps = BN.ϵ, training = BN.active)
|
||||
BN.λ.(batchnorm(BN.γ, BN.β, x, BN.μ, BN.σ², BN.momentum; cache = cache, alpha = 1, beta = 0, eps = BN.ϵ, training = BN.active))
|
||||
|
||||
batchnorm(g::TrackedArray, b::TrackedArray, x::TrackedArray, running_mean::CuArray{T},
|
||||
running_var::CuArray{T}, momentum; kw...) where T<:Union{Float32, Float64} =
|
||||
|
|
|
@ -101,18 +101,18 @@ function cudnnRNNForward(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, cd, c, wd, w, yd
|
|||
if reserve == nothing
|
||||
@check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t,
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Csize_t),
|
||||
Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T}, Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T},
|
||||
CuPtr{Nothing}, Csize_t),
|
||||
handle(), rnn, seqlen,
|
||||
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
||||
workspace, length(workspace))
|
||||
else
|
||||
@check ccall((:cudnnRNNForwardTraining, libcudnn), cudnnStatus_t,
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
|
||||
Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T},
|
||||
CuPtr{Nothing}, Csize_t, CuPtr{Nothing}, Csize_t),
|
||||
handle(), rnn, seqlen,
|
||||
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
|
||||
workspace, length(workspace), reserve, length(reserve))
|
||||
|
@ -121,7 +121,7 @@ end
|
|||
|
||||
xDesc(x) = [TensorDesc(eltype(x), (1, size(x, 1), size(x, 2)))]
|
||||
|
||||
hDesc(h::Nothing) = C_NULL, C_NULL
|
||||
hDesc(h::Nothing) = C_NULL, CU_NULL
|
||||
hDesc(x::Integer) = (@assert x == 0; hDesc(nothing))
|
||||
function hDesc(h::CuArray)
|
||||
TensorDesc(eltype(h), (size(h, 1), size(h, 2), 1)), h
|
||||
|
@ -169,10 +169,10 @@ function cudnnRNNBackwardData(rnn::RNNDesc{T}, seqlen, yd, y, dyd, dy, dhod, dho
|
|||
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, rs) where T
|
||||
@check ccall((:cudnnRNNBackwardData,libcudnn),cudnnStatus_t,
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint,
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing},
|
||||
Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
|
||||
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
|
||||
Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Nothing}, CuPtr{T},
|
||||
Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing},
|
||||
CuPtr{T}, Ptr{Ptr{Nothing}}, CuPtr{T}, Ptr{Nothing}, CuPtr{T}, Ptr{Nothing}, CuPtr{T},
|
||||
CuPtr{Nothing}, Csize_t, CuPtr{Nothing}, Csize_t),
|
||||
handle(), rnn, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
|
||||
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, length(ws), rs, length(rs))
|
||||
end
|
||||
|
@ -199,12 +199,12 @@ function cudnnRNNBackwardWeights(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, yd, y, d
|
|||
workspace, reserve) where T
|
||||
@check ccall((:cudnnRNNBackwardWeights,libcudnn), cudnnStatus_t,
|
||||
(Ptr{Nothing}, Ptr{Nothing}, Cint, # handle, rnnDesc, seqLength
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, #x
|
||||
Ptr{Nothing}, Ptr{T}, #hx
|
||||
Ptr{Ptr{Nothing}}, Ptr{T}, #y
|
||||
Ptr{Nothing}, Csize_t, #ws
|
||||
Ptr{Nothing}, Ptr{T}, #dw
|
||||
Ptr{Nothing}, Csize_t), #rs
|
||||
Ptr{Ptr{Nothing}}, CuPtr{T}, #x
|
||||
Ptr{Nothing}, CuPtr{T}, #hx
|
||||
Ptr{Ptr{Nothing}}, CuPtr{T}, #y
|
||||
CuPtr{Nothing}, Csize_t, #ws
|
||||
Ptr{Nothing}, CuPtr{T}, #dw
|
||||
CuPtr{Nothing}, Csize_t), #rs
|
||||
handle(), rnn, seqlen, xd, x, hd, h, yd, y,
|
||||
workspace, length(workspace), dwd, dw, reserve, length(reserve))
|
||||
end
|
||||
|
|
|
@ -1,11 +1,27 @@
|
|||
module Data
|
||||
|
||||
import ..Flux
|
||||
import SHA
|
||||
|
||||
export CMUDict, cmudict
|
||||
|
||||
deps(path...) = joinpath(@__DIR__, "..", "..", "deps", path...)
|
||||
|
||||
function download_and_verify(url, path, hash)
|
||||
tmppath = tempname()
|
||||
download(url, tmppath)
|
||||
hash_download = open(tmppath) do f
|
||||
bytes2hex(SHA.sha256(f))
|
||||
end
|
||||
if hash_download !== hash
|
||||
msg = "Hash Mismatch!\n"
|
||||
msg *= " Expected sha256: $hash\n"
|
||||
msg *= " Calculated sha256: $hash_download"
|
||||
error(msg)
|
||||
end
|
||||
mv(tmppath, path; force=true)
|
||||
end
|
||||
|
||||
function __init__()
|
||||
mkpath(deps())
|
||||
end
|
||||
|
@ -23,4 +39,7 @@ include("tree.jl")
|
|||
include("sentiment.jl")
|
||||
using .Sentiment
|
||||
|
||||
include("iris.jl")
|
||||
export Iris
|
||||
|
||||
end
|
||||
|
|
|
@ -2,23 +2,25 @@ module CMUDict
|
|||
|
||||
export cmudict
|
||||
|
||||
using ..Data: deps
|
||||
using ..Data: deps, download_and_verify
|
||||
|
||||
const version = "0.7b"
|
||||
const cache_prefix = "https://cache.julialang.org"
|
||||
|
||||
function load()
|
||||
suffixes = ["", ".phones", ".symbols"]
|
||||
suffixes_and_hashes = [("" , "209a8b4cd265013e96f4658632a9878103b0c5abf62b50d4ef3ae1be226b29e4"),
|
||||
(".phones" , "ffb588a5e55684723582c7256e1d2f9fadb130011392d9e59237c76e34c2cfd6"),
|
||||
(".symbols", "408ccaae803641c6d7b626b6299949320c2dbca96b2220fd3fb17887b023b027")]
|
||||
if isdir(deps("cmudict"))
|
||||
if all(isfile(deps("cmudict", "cmudict$x")) for x in suffixes)
|
||||
if all(isfile(deps("cmudict", "cmudict$x")) for (x, _) in suffixes_and_hashes)
|
||||
return
|
||||
end
|
||||
end
|
||||
@info "Downloading CMUDict dataset"
|
||||
mkpath(deps("cmudict"))
|
||||
for x in suffixes
|
||||
download("$cache_prefix/http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-$version$x",
|
||||
deps("cmudict", "cmudict$x"))
|
||||
for (x, hash) in suffixes_and_hashes
|
||||
download_and_verify("$cache_prefix/https://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-$version$x",
|
||||
deps("cmudict", "cmudict$x"), hash)
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
@ -1,19 +1,20 @@
|
|||
module FashionMNIST
|
||||
|
||||
using ..MNIST: gzopen, imageheader, rawimage, labelheader, rawlabel
|
||||
using ..Data: download_and_verify
|
||||
|
||||
const dir = joinpath(@__DIR__, "../../deps/fashion-mnist")
|
||||
|
||||
function load()
|
||||
mkpath(dir)
|
||||
cd(dir) do
|
||||
for file in ["train-images-idx3-ubyte",
|
||||
"train-labels-idx1-ubyte",
|
||||
"t10k-images-idx3-ubyte",
|
||||
"t10k-labels-idx1-ubyte"]
|
||||
for (file, hash) in [("train-images-idx3-ubyte", "3aede38d61863908ad78613f6a32ed271626dd12800ba2636569512369268a84"),
|
||||
("train-labels-idx1-ubyte", "a04f17134ac03560a47e3764e11b92fc97de4d1bfaf8ba1a3aa29af54cc90845"),
|
||||
("t10k-images-idx3-ubyte" , "346e55b948d973a97e58d2351dde16a484bd415d4595297633bb08f03db6a073"),
|
||||
("t10k-labels-idx1-ubyte" , "67da17c76eaffca5446c3361aaab5c3cd6d1c2608764d35dfb1850b086bf8dd5")]
|
||||
isfile(file) && continue
|
||||
@info "Downloading Fashion-MNIST dataset"
|
||||
download("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/$file.gz", "$file.gz")
|
||||
download_and_verify("http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/$file.gz", "$file.gz", hash)
|
||||
open(file, "w") do io
|
||||
write(io, gzopen(read, "$file.gz"))
|
||||
end
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
|
||||
"""
|
||||
|
||||
Iris
|
||||
|
||||
Fisher's classic iris dataset.
|
||||
|
||||
Measurements from 3 different species of iris: setosa, versicolor and
|
||||
virginica. There are 50 examples of each species.
|
||||
|
||||
There are 4 measurements for each example: sepal length, sepal width, petal
|
||||
length and petal width. The measurements are in centimeters.
|
||||
|
||||
The module retrieves the data from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/iris).
|
||||
|
||||
"""
|
||||
module Iris
|
||||
|
||||
using DelimitedFiles
|
||||
using ..Data: deps, download_and_verify
|
||||
|
||||
# Uncomment if the iris.data file is cached to cache.julialang.org.
|
||||
const cache_prefix = "https://cache.julialang.org/"
|
||||
|
||||
function load()
|
||||
isfile(deps("iris.data")) && return
|
||||
|
||||
@info "Downloading iris dataset."
|
||||
download_and_verify("$(cache_prefix)https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
|
||||
deps("iris.data"),
|
||||
"6f608b71a7317216319b4d27b4d9bc84e6abd734eda7872b71a458569e2656c0")
|
||||
end
|
||||
|
||||
"""
|
||||
|
||||
labels()
|
||||
|
||||
Get the labels of the iris dataset, a 150 element array of strings listing the
|
||||
species of each example.
|
||||
|
||||
```jldoctest
|
||||
julia> labels = Flux.Data.Iris.labels();
|
||||
|
||||
julia> summary(labels)
|
||||
"150-element Array{String,1}"
|
||||
|
||||
julia> labels[1]
|
||||
"Iris-setosa"
|
||||
```
|
||||
"""
|
||||
function labels()
|
||||
load()
|
||||
iris = readdlm(deps("iris.data"), ',')
|
||||
Vector{String}(iris[1:end, end])
|
||||
end
|
||||
|
||||
"""
|
||||
|
||||
features()
|
||||
|
||||
Get the features of the iris dataset. This is a 4x150 matrix of Float64
|
||||
elements. It has a row for each feature (sepal length, sepal width,
|
||||
petal length, petal width) and a column for each example.
|
||||
|
||||
```jldoctest
|
||||
julia> features = Flux.Data.Iris.features();
|
||||
|
||||
julia> summary(features)
|
||||
"4×150 Array{Float64,2}"
|
||||
|
||||
julia> features[:, 1]
|
||||
4-element Array{Float64,1}:
|
||||
5.1
|
||||
3.5
|
||||
1.4
|
||||
0.2
|
||||
```
|
||||
"""
|
||||
function features()
|
||||
load()
|
||||
iris = readdlm(deps("iris.data"), ',')
|
||||
Matrix{Float64}(iris[1:end, 1:4]')
|
||||
end
|
||||
end
|
||||
|
||||
|
|
@ -1,6 +1,7 @@
|
|||
module MNIST
|
||||
|
||||
using CodecZlib, Colors
|
||||
using ..Data: download_and_verify
|
||||
|
||||
const Gray = Colors.Gray{Colors.N0f8}
|
||||
|
||||
|
@ -15,13 +16,13 @@ end
|
|||
function load()
|
||||
mkpath(dir)
|
||||
cd(dir) do
|
||||
for file in ["train-images-idx3-ubyte",
|
||||
"train-labels-idx1-ubyte",
|
||||
"t10k-images-idx3-ubyte",
|
||||
"t10k-labels-idx1-ubyte"]
|
||||
for (file, hash) in [("train-images-idx3-ubyte", "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609"),
|
||||
("train-labels-idx1-ubyte", "3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c"),
|
||||
("t10k-images-idx3-ubyte" , "8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6"),
|
||||
("t10k-labels-idx1-ubyte" , "f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6")]
|
||||
isfile(file) && continue
|
||||
@info "Downloading MNIST dataset"
|
||||
download("https://cache.julialang.org/http://yann.lecun.com/exdb/mnist/$file.gz", "$file.gz")
|
||||
download_and_verify("https://cache.julialang.org/http://yann.lecun.com/exdb/mnist/$file.gz", "$file.gz", hash)
|
||||
open(file, "w") do io
|
||||
write(io, gzopen(read, "$file.gz"))
|
||||
end
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
module Sentiment
|
||||
|
||||
using ZipFile
|
||||
using ..Data: deps
|
||||
using ..Data: deps, download_and_verify
|
||||
|
||||
function load()
|
||||
isfile(deps("sentiment.zip")) && return
|
||||
@info "Downloading sentiment treebank dataset"
|
||||
download("https://cache.julialang.org/https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip",
|
||||
deps("sentiment.zip"))
|
||||
download_and_verify("https://cache.julialang.org/https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip",
|
||||
deps("sentiment.zip"), "5c613a4f673fc74097d523a2c83f38e0cc462984d847b82c7aaf36b01cbbbfcc")
|
||||
end
|
||||
|
||||
getfile(r, name) = r.files[findfirst(x -> x.name == name, r.files)]
|
||||
|
|
|
@ -40,7 +40,24 @@ function Base.show(io::IO, c::Chain)
|
|||
print(io, ")")
|
||||
end
|
||||
|
||||
activations(c::Chain, x) = accumulate((x, m) -> m(x), c.layers, init = x)
|
||||
|
||||
# This is a temporary and naive implementation
|
||||
# it might be replaced in the future for better performance
|
||||
# see issue https://github.com/FluxML/Flux.jl/issues/702
|
||||
# Johnny Chen -- @johnnychen94
|
||||
"""
|
||||
activations(c::Chain, input)
|
||||
Calculate the forward results of each layers in Chain `c` with `input` as model input.
|
||||
"""
|
||||
function activations(c::Chain, input)
|
||||
rst = []
|
||||
for l in c
|
||||
x = get(rst, length(rst), input)
|
||||
push!(rst, l(x))
|
||||
end
|
||||
return rst
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
Dense(in::Integer, out::Integer, σ = identity)
|
||||
|
@ -88,6 +105,14 @@ function Base.show(io::IO, l::Dense)
|
|||
print(io, ")")
|
||||
end
|
||||
|
||||
# Try to avoid hitting generic matmul in some simple cases
|
||||
# Base's matmul is so slow that it's worth the extra conversion to hit BLAS
|
||||
(a::Dense{<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
(a::Dense{<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
|
||||
"""
|
||||
Diagonal(in::Integer)
|
||||
|
||||
|
@ -117,10 +142,50 @@ function Base.show(io::IO, l::Diagonal)
|
|||
print(io, "Diagonal(", length(l.α), ")")
|
||||
end
|
||||
|
||||
# Try to avoid hitting generic matmul in some simple cases
|
||||
# Base's matmul is so slow that it's worth the extra conversion to hit BLAS
|
||||
(a::Dense{<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
(a::Dense{<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
"""
|
||||
Maxout(over)
|
||||
|
||||
`Maxout` is a neural network layer, which has a number of internal layers,
|
||||
which all have the same input, and the maxout returns the elementwise maximium
|
||||
of the internal layers' outputs.
|
||||
|
||||
Maxout over linear dense layers satisfies the univeral approximation theorem.
|
||||
|
||||
Reference:
|
||||
Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
|
||||
2013. Maxout networks.
|
||||
In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 (ICML'13),
|
||||
Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28. JMLR.org III-1319-III-1327.
|
||||
https://arxiv.org/pdf/1302.4389.pdf
|
||||
"""
|
||||
struct Maxout{FS<:Tuple}
|
||||
over::FS
|
||||
end
|
||||
|
||||
"""
|
||||
Maxout(f, n_alts)
|
||||
|
||||
Constructs a Maxout layer over `n_alts` instances of the layer given by `f`.
|
||||
The function takes no arguement and should return some callable layer.
|
||||
Conventionally this is a linear dense layer.
|
||||
|
||||
For example the following example which
|
||||
will construct a `Maxout` layer over 4 internal dense linear layers,
|
||||
each identical in structure (784 inputs, 128 outputs).
|
||||
```julia
|
||||
insize = 784
|
||||
outsize = 128
|
||||
Maxout(()->Dense(insize, outsize), 4)
|
||||
```
|
||||
"""
|
||||
function Maxout(f, n_alts)
|
||||
over = Tuple(f() for _ in 1:n_alts)
|
||||
return Maxout(over)
|
||||
end
|
||||
|
||||
@treelike Maxout
|
||||
|
||||
function (mo::Maxout)(input::AbstractArray)
|
||||
mapreduce(f -> f(input), (acc, out) -> max.(acc, out), mo.over)
|
||||
end
|
||||
|
|
|
@ -1,10 +1,7 @@
|
|||
using NNlib: conv, depthwiseconv
|
||||
|
||||
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
|
||||
expand(N, i::Tuple) = i
|
||||
expand(N, i::Integer) = ntuple(_ -> i, N)
|
||||
|
||||
"""
|
||||
Conv(size, in=>out)
|
||||
Conv(size, in=>out, relu)
|
||||
|
@ -12,23 +9,36 @@ expand(N, i::Integer) = ntuple(_ -> i, N)
|
|||
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
Example: Applying Conv layer to a 1-channel input using a 2x2 window size,
|
||||
giving us a 16-channel output. Output is activated with ReLU.
|
||||
|
||||
size = (2,2)
|
||||
in = 1
|
||||
out = 16
|
||||
Conv((2, 2), 1=>16, relu)
|
||||
|
||||
Data should be stored in WHCN order (width, height, # channels, # batches).
|
||||
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
|
||||
and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct Conv{N,F,A,V}
|
||||
struct Conv{N,M,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N} =
|
||||
Conv(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
|
||||
function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return Conv(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||||
|
@ -41,7 +51,8 @@ function (c::Conv)(x::AbstractArray)
|
|||
# TODO: breaks gpu broadcast :(
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(conv(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
|
||||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
σ.(conv(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::Conv)
|
||||
|
@ -57,6 +68,73 @@ end
|
|||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
|
||||
"""
|
||||
ConvTranspose(size, in=>out)
|
||||
ConvTranspose(size, in=>out, relu)
|
||||
|
||||
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct ConvTranspose{N,M,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return ConvTranspose(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||||
ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
|
||||
@treelike ConvTranspose
|
||||
|
||||
function conv_transpose_dims(c::ConvTranspose, x::AbstractArray)
|
||||
# Calculate size of "input", from ∇conv_data()'s perspective...
|
||||
combined_pad = (c.pad[1:2:end] .+ c.pad[2:2:end])
|
||||
I = (size(x)[1:end-2] .- 1).*c.stride .+ 1 .+ (size(c.weight)[1:end-2] .- 1).*c.dilation .- combined_pad
|
||||
C_in = size(c.weight)[end-1]
|
||||
batch_size = size(x)[end]
|
||||
# Create DenseConvDims() that looks like the corresponding conv()
|
||||
return DenseConvDims((I..., C_in, batch_size), size(c.weight);
|
||||
stride=c.stride,
|
||||
padding=c.pad,
|
||||
dilation=c.dilation,
|
||||
)
|
||||
end
|
||||
|
||||
function (c::ConvTranspose)(x::AbstractArray)
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = conv_transpose_dims(c, x)
|
||||
return σ.(∇conv_data(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::ConvTranspose)
|
||||
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||||
l.σ == identity || print(io, ", ", l.σ)
|
||||
print(io, ")")
|
||||
end
|
||||
|
||||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
"""
|
||||
DepthwiseConv(size, in)
|
||||
DepthwiseConv(size, in=>mul)
|
||||
|
@ -71,26 +149,32 @@ be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
|||
|
||||
Takes the keyword arguments `pad` and `stride`.
|
||||
"""
|
||||
struct DepthwiseConv{N,F,A,V}
|
||||
struct DepthwiseConv{N,M,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0) where {T,N} =
|
||||
DepthwiseConv(σ, w, b, expand.(sub2(Val(N)), (stride, pad))...)
|
||||
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return DepthwiseConv(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = initn,
|
||||
stride = 1, pad = 0) where N =
|
||||
DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = glorot_uniform,
|
||||
stride = 1, pad = 0, dilation = 1) where N =
|
||||
DepthwiseConv(param(init(k..., 1, ch)), param(zeros(ch)), σ,
|
||||
stride = stride, pad = pad)
|
||||
stride = stride, pad = pad, dilation=dilation)
|
||||
|
||||
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
|
||||
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform,
|
||||
stride::NTuple{N,Integer} = map(_->1,k),
|
||||
pad::NTuple{N,Integer} = map(_->0,k)) where N =
|
||||
pad::NTuple{N,Integer} = map(_->0,2 .* k),
|
||||
dilation::NTuple{N,Integer} = map(_->1,k)) where N =
|
||||
DepthwiseConv(param(init(k..., ch[2], ch[1])), param(zeros(ch[2]*ch[1])), σ,
|
||||
stride = stride, pad = pad)
|
||||
|
||||
|
@ -98,7 +182,8 @@ DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity
|
|||
|
||||
function (c::DepthwiseConv)(x)
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(depthwiseconv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
|
||||
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::DepthwiseConv)
|
||||
|
@ -108,6 +193,12 @@ function Base.show(io::IO, l::DepthwiseConv)
|
|||
print(io, ")")
|
||||
end
|
||||
|
||||
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
|
||||
"""
|
||||
MaxPool(k)
|
||||
|
||||
|
@ -115,16 +206,23 @@ Max pooling layer. `k` stands for the size of the window for each dimension of t
|
|||
|
||||
Takes the keyword arguments `pad` and `stride`.
|
||||
"""
|
||||
struct MaxPool{N}
|
||||
struct MaxPool{N,M}
|
||||
k::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
stride::NTuple{N,Int}
|
||||
end
|
||||
|
||||
MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
|
||||
MaxPool(k, expand(Val(N), pad), expand(Val(N), stride))
|
||||
function MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
|
||||
stride = expand(Val(N), stride)
|
||||
pad = expand(Val(2*N), pad)
|
||||
|
||||
(m::MaxPool)(x) = maxpool(x, m.k; pad = m.pad, stride = m.stride)
|
||||
return MaxPool(k, pad, stride)
|
||||
end
|
||||
|
||||
function (m::MaxPool)(x)
|
||||
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
|
||||
return maxpool(x, pdims)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, m::MaxPool)
|
||||
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
|
||||
|
@ -137,16 +235,22 @@ Mean pooling layer. `k` stands for the size of the window for each dimension of
|
|||
|
||||
Takes the keyword arguments `pad` and `stride`.
|
||||
"""
|
||||
struct MeanPool{N}
|
||||
struct MeanPool{N,M}
|
||||
k::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
stride::NTuple{N,Int}
|
||||
end
|
||||
|
||||
MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
|
||||
MeanPool(k, expand(Val(N), pad), expand(Val(N), stride))
|
||||
function MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
|
||||
stride = expand(Val(N), stride)
|
||||
pad = expand(Val(2*N), pad)
|
||||
return MeanPool(k, pad, stride)
|
||||
end
|
||||
|
||||
(m::MeanPool)(x) = meanpool(x, m.k; pad = m.pad, stride = m.stride)
|
||||
function (m::MeanPool)(x)
|
||||
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
|
||||
return meanpool(x, pdims)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, m::MeanPool)
|
||||
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
|
||||
|
|
|
@ -61,6 +61,37 @@ end
|
|||
|
||||
_testmode!(a::Dropout, test) = (a.active = !test)
|
||||
|
||||
"""
|
||||
AlphaDropout(p)
|
||||
A dropout layer. It is used in Self-Normalizing Neural Networks.
|
||||
(https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)
|
||||
The AlphaDropout layer ensures that mean and variance of activations remains the same as before.
|
||||
"""
|
||||
mutable struct AlphaDropout{F}
|
||||
p::F
|
||||
active::Bool
|
||||
end
|
||||
|
||||
function AlphaDropout(p)
|
||||
@assert 0 ≤ p ≤ 1
|
||||
AlphaDropout(p,true)
|
||||
end
|
||||
|
||||
function (a::AlphaDropout)(x)
|
||||
a.active || return x
|
||||
λ = eltype(x)(1.0507009873554804934193349852946)
|
||||
α = eltype(x)(1.6732632423543772848170429916717)
|
||||
α1 = eltype(x)(-λ*α)
|
||||
noise = randn(eltype(x), size(x))
|
||||
x = @. x*(noise > (1 - a.p)) + α1 * (noise <= (1 - a.p))
|
||||
A = (a.p + a.p * (1 - a.p) * α1 ^ 2)^0.5
|
||||
B = -A * α1 * (1 - a.p)
|
||||
x = @. A * x + B
|
||||
return x
|
||||
end
|
||||
|
||||
_testmode!(a::AlphaDropout, test) = (a.active = !test)
|
||||
|
||||
"""
|
||||
LayerNorm(h::Integer)
|
||||
|
||||
|
@ -124,39 +155,39 @@ mutable struct BatchNorm{F,V,W,N}
|
|||
end
|
||||
|
||||
BatchNorm(chs::Integer, λ = identity;
|
||||
initβ = (i) -> zeros(i), initγ = (i) -> ones(i), ϵ = 1e-5, momentum = .1) =
|
||||
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
|
||||
BatchNorm(λ, param(initβ(chs)), param(initγ(chs)),
|
||||
zeros(chs), ones(chs), ϵ, momentum, true)
|
||||
|
||||
function (BN::BatchNorm)(x)
|
||||
size(x, ndims(x)-1) == length(BN.β) ||
|
||||
error("BatchNorm expected $(length(BN.β)) channels, got $(size(x, ndims(x)-1))")
|
||||
γ, β = BN.γ, BN.β
|
||||
dims = length(size(x))
|
||||
channels = size(x, dims-1)
|
||||
affine_shape = ones(Int, dims)
|
||||
affine_shape[end-1] = channels
|
||||
m = prod(size(x)[1:end-2]) * size(x)[end]
|
||||
|
||||
γ = reshape(BN.γ, affine_shape...)
|
||||
β = reshape(BN.β, affine_shape...)
|
||||
if !BN.active
|
||||
μ = reshape(BN.μ, affine_shape...)
|
||||
σ² = reshape(BN.σ², affine_shape...)
|
||||
ϵ = BN.ϵ
|
||||
else
|
||||
T = eltype(x)
|
||||
|
||||
ϵ = data(convert(T, BN.ϵ))
|
||||
axes = [1:dims-2; dims] # axes to reduce along (all but channels axis)
|
||||
μ = mean(x, dims = axes)
|
||||
σ² = sum((x .- μ) .^ 2, dims = axes) ./ m
|
||||
|
||||
ϵ = data(convert(T, BN.ϵ))
|
||||
# update moving mean/std
|
||||
mtm = data(convert(T, BN.momentum))
|
||||
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* reshape(data(μ), :)
|
||||
BN.σ² = ((1 - mtm) .* BN.σ² .+ mtm .* reshape(data(σ²), :) .* m ./ (m - 1))
|
||||
BN.σ² = (1 - mtm) .* BN.σ² .+ (mtm * m / (m - 1)) .* reshape(data(σ²), :)
|
||||
end
|
||||
|
||||
let λ = BN.λ
|
||||
λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ sqrt.(σ² .+ BN.ϵ)) .+ reshape(β, affine_shape...))
|
||||
x̂ = (x .- μ) ./ sqrt.(σ² .+ ϵ)
|
||||
λ.(γ .* x̂ .+ β)
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -173,3 +204,209 @@ function Base.show(io::IO, l::BatchNorm)
|
|||
(l.λ == identity) || print(io, ", λ = $(l.λ)")
|
||||
print(io, ")")
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
InstanceNorm(channels::Integer, σ = identity;
|
||||
initβ = zeros, initγ = ones,
|
||||
ϵ = 1e-8, momentum = .1)
|
||||
|
||||
Instance Normalization layer. The `channels` input should be the size of the
|
||||
channel dimension in your data (see below).
|
||||
|
||||
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
|
||||
a batch of feature vectors this is just the data dimension, for `WHCN` images
|
||||
it's the usual channel dimension.)
|
||||
|
||||
`InstanceNorm` computes the mean and variance for each each `W×H×1×1` slice and
|
||||
shifts them to have a new mean and variance (corresponding to the learnable,
|
||||
per-channel `bias` and `scale` parameters).
|
||||
|
||||
See [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
|
||||
|
||||
Example:
|
||||
```julia
|
||||
m = Chain(
|
||||
Dense(28^2, 64),
|
||||
InstanceNorm(64, relu),
|
||||
Dense(64, 10),
|
||||
InstanceNorm(10),
|
||||
softmax)
|
||||
```
|
||||
"""
|
||||
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
|
||||
|
||||
mutable struct InstanceNorm{F,V,W,N}
|
||||
λ::F # activation function
|
||||
β::V # bias
|
||||
γ::V # scale
|
||||
μ::W # moving mean
|
||||
σ²::W # moving std
|
||||
ϵ::N
|
||||
momentum::N
|
||||
active::Bool
|
||||
end
|
||||
|
||||
InstanceNorm(chs::Integer, λ = identity;
|
||||
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
|
||||
InstanceNorm(λ, param(initβ(chs)), param(initγ(chs)),
|
||||
zeros(chs), ones(chs), ϵ, momentum, true)
|
||||
|
||||
function (in::InstanceNorm)(x)
|
||||
size(x, ndims(x)-1) == length(in.β) ||
|
||||
error("InstanceNorm expected $(length(in.β)) channels, got $(size(x, ndims(x)-1))")
|
||||
ndims(x) > 2 ||
|
||||
error("InstanceNorm requires at least 3 dimensions. With 2 dimensions an array of zeros would be returned")
|
||||
# these are repeated later on depending on the batch size
|
||||
dims = length(size(x))
|
||||
c = size(x, dims-1)
|
||||
bs = size(x, dims)
|
||||
affine_shape = ones(Int, dims)
|
||||
affine_shape[end-1] = c
|
||||
affine_shape[end] = bs
|
||||
m = prod(size(x)[1:end-2])
|
||||
γ, β = expand_inst(in.γ, affine_shape), expand_inst(in.β, affine_shape)
|
||||
|
||||
if !in.active
|
||||
μ = expand_inst(in.μ, affine_shape)
|
||||
σ² = expand_inst(in.σ², affine_shape)
|
||||
ϵ = in.ϵ
|
||||
else
|
||||
T = eltype(x)
|
||||
|
||||
ϵ = data(convert(T, in.ϵ))
|
||||
axes = 1:dims-2 # axes to reduce along (all but channels and batch size axes)
|
||||
μ = mean(x, dims = axes)
|
||||
σ² = mean((x .- μ) .^ 2, dims = axes)
|
||||
|
||||
# update moving mean/std
|
||||
mtm = data(convert(T, in.momentum))
|
||||
in.μ = dropdims(mean(repeat((1 - mtm) .* in.μ, outer=[1, bs]) .+ mtm .* reshape(data(μ), (c, bs)), dims = 2), dims=2)
|
||||
in.σ² = dropdims(mean((repeat((1 - mtm) .* in.σ², outer=[1, bs]) .+ (mtm * m / (m - 1)) .* reshape(data(σ²), (c, bs))), dims = 2), dims=2)
|
||||
end
|
||||
|
||||
let λ = in.λ
|
||||
x̂ = (x .- μ) ./ sqrt.(σ² .+ ϵ)
|
||||
λ.(γ .* x̂ .+ β)
|
||||
end
|
||||
end
|
||||
|
||||
children(in::InstanceNorm) =
|
||||
(in.λ, in.β, in.γ, in.μ, in.σ², in.ϵ, in.momentum, in.active)
|
||||
|
||||
mapchildren(f, in::InstanceNorm) = # e.g. mapchildren(cu, in)
|
||||
InstanceNorm(in.λ, f(in.β), f(in.γ), f(in.μ), f(in.σ²), in.ϵ, in.momentum, in.active)
|
||||
|
||||
_testmode!(in::InstanceNorm, test) = (in.active = !test)
|
||||
|
||||
function Base.show(io::IO, l::InstanceNorm)
|
||||
print(io, "InstanceNorm($(join(size(l.β), ", "))")
|
||||
(l.λ == identity) || print(io, ", λ = $(l.λ)")
|
||||
print(io, ")")
|
||||
end
|
||||
|
||||
"""
|
||||
Group Normalization.
|
||||
This layer can outperform Batch-Normalization and Instance-Normalization.
|
||||
|
||||
GroupNorm(chs::Integer, G::Integer, λ = identity;
|
||||
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i),
|
||||
ϵ = 1f-5, momentum = 0.1f0)
|
||||
|
||||
``chs`` is the number of channels, the channel dimension of your input.
|
||||
For an array of N dimensions, the (N-1)th index is the channel dimension.
|
||||
|
||||
``G`` is the number of groups along which the statistics would be computed.
|
||||
The number of channels must be an integer multiple of the number of groups.
|
||||
|
||||
Example:
|
||||
```
|
||||
m = Chain(Conv((3,3), 1=>32, leakyrelu;pad = 1),
|
||||
GroupNorm(32,16)) # 32 channels, 16 groups (G = 16), thus 2 channels per group used
|
||||
```
|
||||
|
||||
Link : https://arxiv.org/pdf/1803.08494.pdf
|
||||
"""
|
||||
|
||||
mutable struct GroupNorm{F,V,W,N,T}
|
||||
G::T # number of groups
|
||||
λ::F # activation function
|
||||
β::V # bias
|
||||
γ::V # scale
|
||||
μ::W # moving mean
|
||||
σ²::W # moving std
|
||||
ϵ::N
|
||||
momentum::N
|
||||
active::Bool
|
||||
end
|
||||
|
||||
GroupNorm(chs::Integer, G::Integer, λ = identity;
|
||||
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
|
||||
GroupNorm(G, λ, param(initβ(chs)), param(initγ(chs)),
|
||||
zeros(G,1), ones(G,1), ϵ, momentum, true)
|
||||
|
||||
function(gn::GroupNorm)(x)
|
||||
size(x,ndims(x)-1) == length(gn.β) || error("Group Norm expected $(length(gn.β)) channels, but got $(size(x,ndims(x)-1)) channels")
|
||||
ndims(x) > 2 || error("Need to pass at least 3 channels for Group Norm to work")
|
||||
(size(x,ndims(x) -1))%gn.G == 0 || error("The number of groups ($(gn.G)) must divide the number of channels ($(size(x,ndims(x) -1)))")
|
||||
|
||||
dims = length(size(x))
|
||||
groups = gn.G
|
||||
channels = size(x, dims-1)
|
||||
batches = size(x,dims)
|
||||
channels_per_group = div(channels,groups)
|
||||
affine_shape = ones(Int, dims)
|
||||
|
||||
# Output reshaped to (W,H...,C/G,G,N)
|
||||
affine_shape[end-1] = channels
|
||||
|
||||
μ_affine_shape = ones(Int,dims + 1)
|
||||
μ_affine_shape[end-1] = groups
|
||||
|
||||
m = prod(size(x)[1:end-2]) * channels_per_group
|
||||
γ = reshape(gn.γ, affine_shape...)
|
||||
β = reshape(gn.β, affine_shape...)
|
||||
|
||||
y = reshape(x,((size(x))[1:end-2]...,channels_per_group,groups,batches))
|
||||
if !gn.active
|
||||
og_shape = size(x)
|
||||
μ = reshape(gn.μ, μ_affine_shape...) # Shape : (1,1,...C/G,G,1)
|
||||
σ² = reshape(gn.σ², μ_affine_shape...) # Shape : (1,1,...C/G,G,1)
|
||||
ϵ = gn.ϵ
|
||||
else
|
||||
T = eltype(x)
|
||||
og_shape = size(x)
|
||||
axes = [(1:ndims(y)-2)...] # axes to reduce along (all but channels axis)
|
||||
μ = mean(y, dims = axes)
|
||||
σ² = mean((y .- μ) .^ 2, dims = axes)
|
||||
|
||||
ϵ = data(convert(T, gn.ϵ))
|
||||
# update moving mean/std
|
||||
mtm = data(convert(T, gn.momentum))
|
||||
|
||||
gn.μ = mean((1 - mtm) .* gn.μ .+ mtm .* reshape(data(μ), (groups,batches)),dims=2)
|
||||
gn.σ² = mean((1 - mtm) .* gn.σ² .+ (mtm * m / (m - 1)) .* reshape(data(σ²), (groups,batches)),dims=2)
|
||||
end
|
||||
|
||||
let λ = gn.λ
|
||||
x̂ = (y .- μ) ./ sqrt.(σ² .+ ϵ)
|
||||
|
||||
# Reshape x̂
|
||||
x̂ = reshape(x̂,og_shape)
|
||||
λ.(γ .* x̂ .+ β)
|
||||
end
|
||||
end
|
||||
|
||||
children(gn::GroupNorm) =
|
||||
(gn.λ, gn.β, gn.γ, gn.μ, gn.σ², gn.ϵ, gn.momentum, gn.active)
|
||||
|
||||
mapchildren(f, gn::GroupNorm) = # e.g. mapchildren(cu, BN)
|
||||
GroupNorm(gn.G,gn.λ, f(gn.β), f(gn.γ), f(gn.μ), f(gn.σ²), gn.ϵ, gn.momentum, gn.active)
|
||||
|
||||
_testmode!(gn::GroupNorm, test) = (gn.active = !test)
|
||||
|
||||
function Base.show(io::IO, l::GroupNorm)
|
||||
print(io, "GroupNorm($(join(size(l.β), ", "))")
|
||||
(l.λ == identity) || print(io, ", λ = $(l.λ)")
|
||||
print(io, ")")
|
||||
end
|
||||
|
|
|
@ -84,7 +84,7 @@ end
|
|||
RNNCell(in::Integer, out::Integer, σ = tanh;
|
||||
init = glorot_uniform) =
|
||||
RNNCell(σ, param(init(out, in)), param(init(out, out)),
|
||||
param(zeros(out)), param(init(out)))
|
||||
param(init(out)), param(zeros(out)))
|
||||
|
||||
function (m::RNNCell)(h, x)
|
||||
σ, Wi, Wh, b = m.σ, m.Wi, m.Wh, m.b
|
||||
|
@ -122,8 +122,8 @@ end
|
|||
|
||||
function LSTMCell(in::Integer, out::Integer;
|
||||
init = glorot_uniform)
|
||||
cell = LSTMCell(param(init(out*4, in)), param(init(out*4, out)), param(zeros(out*4)),
|
||||
param(init(out)), param(init(out)))
|
||||
cell = LSTMCell(param(init(out*4, in)), param(init(out*4, out)), param(init(out*4)),
|
||||
param(zeros(out)), param(zeros(out)))
|
||||
cell.b.data[gate(out, 2)] .= 1
|
||||
return cell
|
||||
end
|
||||
|
@ -153,7 +153,7 @@ Base.show(io::IO, l::LSTMCell) =
|
|||
Long Short Term Memory recurrent layer. Behaves like an RNN but generally
|
||||
exhibits a longer memory span over sequences.
|
||||
|
||||
See [this article](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
||||
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
||||
for a good overview of the internals.
|
||||
"""
|
||||
LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...))
|
||||
|
@ -169,7 +169,7 @@ end
|
|||
|
||||
GRUCell(in, out; init = glorot_uniform) =
|
||||
GRUCell(param(init(out*3, in)), param(init(out*3, out)),
|
||||
param(zeros(out*3)), param(init(out)))
|
||||
param(init(out*3)), param(zeros(out)))
|
||||
|
||||
function (m::GRUCell)(h, x)
|
||||
b, o = m.b, size(h, 1)
|
||||
|
@ -194,7 +194,7 @@ Base.show(io::IO, l::GRUCell) =
|
|||
Gated Recurrent Unit layer. Behaves like an RNN but generally
|
||||
exhibits a longer memory span over sequences.
|
||||
|
||||
See [this article](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
||||
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
|
||||
for a good overview of the internals.
|
||||
"""
|
||||
GRU(a...; ka...) = Recur(GRUCell(a...; ka...))
|
||||
|
|
|
@ -8,8 +8,6 @@ function crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
|||
-sum(y .* log.(ŷ) .* weight) * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
@deprecate logloss(x, y) crossentropy(x, y)
|
||||
|
||||
function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
|
||||
return -sum(y .* logsoftmax(logŷ) .* weight) * 1 // size(y, 2)
|
||||
end
|
||||
|
@ -42,12 +40,17 @@ but it is more numerically stable.
|
|||
logitbinarycrossentropy(logŷ, y) = (1 - y)*logŷ - logσ(logŷ)
|
||||
|
||||
"""
|
||||
normalise(x::AbstractVecOrMat)
|
||||
normalise(x::AbstractArray; dims=1)
|
||||
|
||||
Normalise each column of `x` to mean 0 and standard deviation 1.
|
||||
Normalises x to mean 0 and standard deviation 1, across the dimensions given by dims. Defaults to normalising over columns.
|
||||
"""
|
||||
function normalise(x::AbstractVecOrMat)
|
||||
μ′ = mean(x, dims = 1)
|
||||
σ′ = std(x, dims = 1, mean = μ′)
|
||||
function normalise(x::AbstractArray; dims=1)
|
||||
μ′ = mean(x, dims = dims)
|
||||
σ′ = std(x, dims = dims, mean = μ′, corrected=false)
|
||||
return (x .- μ′) ./ σ′
|
||||
end
|
||||
|
||||
function normalise(x::AbstractArray, dims)
|
||||
Base.depwarn("`normalise(x::AbstractArray, dims)` is deprecated, use `normalise(a, dims=dims)` instead.", :normalise)
|
||||
normalise(x, dims = dims)
|
||||
end
|
||||
|
|
|
@ -9,6 +9,8 @@ Base.size(xs::OneHotVector) = (Int64(xs.of),)
|
|||
|
||||
Base.getindex(xs::OneHotVector, i::Integer) = i == xs.ix
|
||||
|
||||
Base.getindex(xs::OneHotVector, ::Colon) = OneHotVector(xs.ix, xs.of)
|
||||
|
||||
A::AbstractMatrix * b::OneHotVector = A[:, b.ix]
|
||||
|
||||
struct OneHotMatrix{A<:AbstractVector{OneHotVector}} <: AbstractMatrix{Bool}
|
||||
|
@ -18,9 +20,12 @@ end
|
|||
|
||||
Base.size(xs::OneHotMatrix) = (Int64(xs.height),length(xs.data))
|
||||
|
||||
Base.getindex(xs::OneHotMatrix, i::Integer, j::Integer) = xs.data[j][i]
|
||||
Base.getindex(xs::OneHotMatrix, i::Union{Integer, AbstractVector}, j::Integer) = xs.data[j][i]
|
||||
Base.getindex(xs::OneHotMatrix, ::Colon, i::Integer) = xs.data[i]
|
||||
Base.getindex(xs::OneHotMatrix, ::Colon, i::AbstractArray) = OneHotMatrix(xs.height, xs.data[i])
|
||||
Base.getindex(xs::OneHotMatrix, ::Colon, ::Colon) = OneHotMatrix(xs.height, copy(xs.data))
|
||||
|
||||
Base.getindex(xs::OneHotMatrix, i::Integer, ::Colon) = map(x -> x[i], xs.data)
|
||||
|
||||
A::AbstractMatrix * B::OneHotMatrix = A[:, map(x->x.ix, B.data)]
|
||||
|
||||
|
@ -39,6 +44,29 @@ adapt_structure(T, xs::OneHotMatrix) = OneHotMatrix(xs.height, adapt(T, xs.data)
|
|||
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
|
||||
end
|
||||
|
||||
"""
|
||||
onehot(l, labels[, unk])
|
||||
|
||||
Create an [`OneHotVector`](@ref) wtih `l`-th element be `true` based on possible `labels` set.
|
||||
If `unk` is given, it retruns `onehot(unk, labels)` if the input label `l` is not find in `labels`; otherwise
|
||||
it will error.
|
||||
|
||||
## Examples
|
||||
|
||||
```jldoctest
|
||||
julia> onehot(:b, [:a, :b, :c])
|
||||
3-element Flux.OneHotVector:
|
||||
false
|
||||
true
|
||||
false
|
||||
|
||||
julia> onehot(:c, [:a, :b, :c])
|
||||
3-element Flux.OneHotVector:
|
||||
false
|
||||
false
|
||||
true
|
||||
```
|
||||
"""
|
||||
function onehot(l, labels)
|
||||
i = something(findfirst(isequal(l), labels), 0)
|
||||
i > 0 || error("Value $l is not in labels")
|
||||
|
@ -51,16 +79,53 @@ function onehot(l, labels, unk)
|
|||
OneHotVector(i, length(labels))
|
||||
end
|
||||
|
||||
"""
|
||||
onehotbatch(ls, labels[, unk...])
|
||||
|
||||
Create an [`OneHotMatrix`](@ref) with a batch of labels based on possible `labels` set, returns the
|
||||
`onehot(unk, labels)` if given labels `ls` is not found in set `labels`.
|
||||
|
||||
## Examples
|
||||
|
||||
```jldoctest
|
||||
julia> onehotbatch([:b, :a, :b], [:a, :b, :c])
|
||||
3×3 Flux.OneHotMatrix:
|
||||
false true false
|
||||
true false true
|
||||
false false false
|
||||
|
||||
```
|
||||
"""
|
||||
onehotbatch(ls, labels, unk...) =
|
||||
OneHotMatrix(length(labels), [onehot(l, labels, unk...) for l in ls])
|
||||
|
||||
Base.argmax(xs::OneHotVector) = xs.ix
|
||||
|
||||
"""
|
||||
onecold(y[, labels = 1:length(y)])
|
||||
|
||||
Inverse operations of [`onehot`](@ref).
|
||||
|
||||
## Examples
|
||||
|
||||
```jldoctest
|
||||
julia> onecold([true, false, false], [:a, :b, :c])
|
||||
:a
|
||||
|
||||
julia> onecold([0.3, 0.2, 0.5], [:a, :b, :c])
|
||||
:c
|
||||
```
|
||||
"""
|
||||
onecold(y::AbstractVector, labels = 1:length(y)) = labels[Base.argmax(y)]
|
||||
|
||||
onecold(y::AbstractMatrix, labels...) =
|
||||
dropdims(mapslices(y -> onecold(y, labels...), y, dims=1), dims=1)
|
||||
|
||||
onecold(y::OneHotMatrix, labels...) =
|
||||
mapreduce(x -> Flux.onecold(x, labels...), |, y.data, dims = 2, init = 0)
|
||||
|
||||
function argmax(xs...)
|
||||
Base.depwarn("`argmax(...) is deprecated, use `onecold(...)` instead.", :argmax)
|
||||
Base.depwarn("`argmax(...)` is deprecated, use `onecold(...)` instead.", :argmax)
|
||||
return onecold(xs...)
|
||||
end
|
||||
|
||||
|
@ -68,3 +133,6 @@ end
|
|||
|
||||
a::TrackedMatrix * b::OneHotVector = invoke(*, Tuple{AbstractMatrix,OneHotVector}, a, b)
|
||||
a::TrackedMatrix * b::OneHotMatrix = invoke(*, Tuple{AbstractMatrix,OneHotMatrix}, a, b)
|
||||
|
||||
onecold(x::TrackedVector, l...) = onecold(data(x), l...)
|
||||
onecold(x::TrackedMatrix, l...) = onecold(data(x), l...)
|
||||
|
|
|
@ -4,7 +4,7 @@ using Flux: Params
|
|||
check_decay(opt, decay) = decay == 0 ? opt : Optimiser(opt, InvDecay(decay))
|
||||
|
||||
# legacy update rule
|
||||
updaterule(opt, ps) = () -> update!(opt, ps)
|
||||
updaterule(opt, ps) = () -> _update_params!(opt, ps)
|
||||
|
||||
function SGD(params::Union{AbstractArray, Params}, η = 0.1; decay = 0.)
|
||||
depwarn("SGD(params) is deprecated; use Descent(η::Float64) instead", :SGD)
|
||||
|
@ -117,7 +117,7 @@ struct OldOptimiser
|
|||
func
|
||||
end
|
||||
|
||||
update!(opt::OldOptimiser, ps) = opt.func()
|
||||
_update_params!(opt::OldOptimiser, ps) = opt.func()
|
||||
|
||||
# Train function
|
||||
function train!(loss, data, opt; cb = () -> ())
|
||||
|
|
|
@ -18,7 +18,7 @@ end
|
|||
|
||||
Descent() = Descent(0.1)
|
||||
|
||||
function update!(o::Descent, x, Δ)
|
||||
function apply!(o::Descent, x, Δ)
|
||||
Δ .*= o.eta
|
||||
end
|
||||
|
||||
|
@ -35,9 +35,9 @@ end
|
|||
|
||||
Momentum(η = 0.01, ρ = 0.9) = Momentum(η, ρ, IdDict())
|
||||
|
||||
function update!(o::Momentum, x, Δ)
|
||||
function apply!(o::Momentum, x, Δ)
|
||||
η, ρ = o.eta, o.rho
|
||||
v = get!(o.velocity, x, zero(x))::typeof(x)
|
||||
v = get!(o.velocity, x, zero(x))::typeof(data(x))
|
||||
@. v = ρ * v - η * Δ
|
||||
@. Δ = -v
|
||||
end
|
||||
|
@ -55,9 +55,9 @@ end
|
|||
|
||||
Nesterov(η = 0.001, ρ = 0.9) = Nesterov(η, ρ, IdDict())
|
||||
|
||||
function update!(o::Nesterov, x, Δ)
|
||||
function apply!(o::Nesterov, x, Δ)
|
||||
η, ρ = o.eta, o.rho
|
||||
v = get!(o.velocity, x, zero(x))::typeof(x)
|
||||
v = get!(o.velocity, x, zero(x))::typeof(data(x))
|
||||
d = @. ρ^2 * v - (1+ρ) * η * Δ
|
||||
@. v = ρ*v - η*Δ
|
||||
@. Δ = -d
|
||||
|
@ -66,7 +66,7 @@ end
|
|||
"""
|
||||
RMSProp(η = 0.001, ρ = 0.9)
|
||||
|
||||
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
||||
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
||||
optimiser. Parameters other than learning rate don't need tuning. Often a good
|
||||
choice for recurrent networks.
|
||||
"""
|
||||
|
@ -78,9 +78,9 @@ end
|
|||
|
||||
RMSProp(η = 0.001, ρ = 0.9) = RMSProp(η, ρ, IdDict())
|
||||
|
||||
function update!(o::RMSProp, x, Δ)
|
||||
function apply!(o::RMSProp, x, Δ)
|
||||
η, ρ = o.eta, o.rho
|
||||
acc = get!(o.acc, x, zero(x))::typeof(x)
|
||||
acc = get!(o.acc, x, zero(x))::typeof(data(x))
|
||||
@. acc = ρ * acc + (1 - ρ) * Δ^2
|
||||
@. Δ *= η / (√acc + ϵ)
|
||||
end
|
||||
|
@ -98,7 +98,7 @@ end
|
|||
|
||||
ADAM(η = 0.001, β = (0.9, 0.999)) = ADAM(η, β, IdDict())
|
||||
|
||||
function update!(o::ADAM, x, Δ)
|
||||
function apply!(o::ADAM, x, Δ)
|
||||
η, β = o.eta, o.beta
|
||||
mt, vt, βp = get!(o.state, x, (zero(x), zero(x), β))
|
||||
@. mt = β[1] * mt + (1 - β[1]) * Δ
|
||||
|
@ -122,7 +122,7 @@ end
|
|||
|
||||
AdaMax(η = 0.001, β = (0.9, 0.999)) = AdaMax(η, β, IdDict())
|
||||
|
||||
function update!(o::AdaMax, x, Δ)
|
||||
function apply!(o::AdaMax, x, Δ)
|
||||
η, β = o.eta, o.beta
|
||||
mt, ut, βp = get!(o.state, x, (zero(x), zero(x), β))
|
||||
@. mt = β[1] * mt + (1 - β[1]) * Δ
|
||||
|
@ -145,9 +145,9 @@ end
|
|||
|
||||
ADAGrad(η = 0.1) = ADAGrad(η, IdDict())
|
||||
|
||||
function update!(o::ADAGrad, x, Δ)
|
||||
function apply!(o::ADAGrad, x, Δ)
|
||||
η = o.eta
|
||||
acc = get!(o.acc, x, fill(ϵ, size(x)))::typeof(x)
|
||||
acc = get!(o.acc, x, fill(ϵ, size(x)))::typeof(data(x))
|
||||
@. acc += Δ^2
|
||||
@. Δ *= η / (√acc + ϵ)
|
||||
end
|
||||
|
@ -155,7 +155,7 @@ end
|
|||
"""
|
||||
ADADelta(ρ = 0.9, ϵ = 1e-8)
|
||||
|
||||
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
||||
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
||||
tuning.
|
||||
"""
|
||||
mutable struct ADADelta
|
||||
|
@ -165,7 +165,7 @@ end
|
|||
|
||||
ADADelta(ρ = 0.9) = ADADelta(ρ, IdDict())
|
||||
|
||||
function update!(o::ADADelta, x, Δ)
|
||||
function apply!(o::ADADelta, x, Δ)
|
||||
ρ = o.rho
|
||||
acc, Δacc = get!(o.state, x, (zero(x), zero(x)))
|
||||
@. acc = ρ * acc + (1 - ρ) * Δ^2
|
||||
|
@ -188,7 +188,7 @@ end
|
|||
|
||||
AMSGrad(η = 0.001, β = (0.9, 0.999)) = AMSGrad(η, β, IdDict())
|
||||
|
||||
function update!(o::AMSGrad, x, Δ)
|
||||
function apply!(o::AMSGrad, x, Δ)
|
||||
η, β = o.eta, o.beta
|
||||
mt, vt, v̂t = get!(o.state, x, (fill(ϵ, size(x)), fill(ϵ, size(x)), fill(ϵ, size(x))))
|
||||
@. mt = β[1] * mt + (1 - β[1]) * Δ
|
||||
|
@ -211,7 +211,7 @@ end
|
|||
|
||||
NADAM(η = 0.001, β = (0.9, 0.999)) = NADAM(η, β, IdDict())
|
||||
|
||||
function update!(o::NADAM, x, Δ)
|
||||
function apply!(o::NADAM, x, Δ)
|
||||
η, β = o.eta, o.beta
|
||||
β1p, β2p = o.beta
|
||||
mt, vt = get!(o.state, x, (zero(x), zero(x)))
|
||||
|
@ -250,9 +250,9 @@ Optimiser(o...) = Optimiser(Any[o...])
|
|||
|
||||
Base.getindex(c::Optimiser, i::AbstractArray) = Optimiser(c.os[i]...)
|
||||
|
||||
function update!(o::Optimiser, x, Δ)
|
||||
function apply!(o::Optimiser, x, Δ)
|
||||
for opt in o.os
|
||||
Δ = update!(opt, x, Δ)
|
||||
Δ = apply!(opt, x, Δ)
|
||||
end
|
||||
return Δ
|
||||
end
|
||||
|
@ -272,7 +272,7 @@ end
|
|||
|
||||
InvDecay(γ = 0.001) = InvDecay(γ, IdDict())
|
||||
|
||||
function update!(o::InvDecay, x, Δ)
|
||||
function apply!(o::InvDecay, x, Δ)
|
||||
γ = o.gamma
|
||||
n = get!(o.state, x, 1)
|
||||
Δ .*= 1 / (1 + γ * n)
|
||||
|
@ -300,14 +300,14 @@ end
|
|||
|
||||
ExpDecay(opt = 0.001, decay = 0.1, decay_step = 1000, clip = 1e-4) = ExpDecay(opt, decay, decay_step, clip, IdDict())
|
||||
|
||||
function update!(o::ExpDecay, x, Δ)
|
||||
function apply!(o::ExpDecay, x, Δ)
|
||||
η, s, decay = o.eta, o.step, o.decay
|
||||
n = o.current[x] = get(o.current, x, 0) + 1
|
||||
if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1
|
||||
η = max(η * decay^(s / n), o.clip)
|
||||
o.eta = η
|
||||
end
|
||||
@. Δ *= decay
|
||||
@. Δ *= η
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -321,7 +321,7 @@ end
|
|||
|
||||
WeightDecay() = WeightDecay(0)
|
||||
|
||||
function update!(o::WeightDecay, x, Δ)
|
||||
function apply!(o::WeightDecay, x, Δ)
|
||||
wd = o.wd
|
||||
@. Δ += wd * x
|
||||
@. Δ += wd * data(x)
|
||||
end
|
||||
|
|
|
@ -1,12 +1,23 @@
|
|||
using Juno
|
||||
using Flux.Tracker: data, grad, back!
|
||||
import Flux.Tracker: Params, gradient, data, update!
|
||||
import Base.depwarn
|
||||
|
||||
function update!(opt, xs)
|
||||
function update!(opt, x, x̄)
|
||||
update!(x, -apply!(opt, x, data(x̄)))
|
||||
end
|
||||
|
||||
function update!(opt, xs::Params, gs)
|
||||
for x in xs
|
||||
Δ = update!(opt, x.data, x.grad)
|
||||
x.data .-= Δ
|
||||
Δ .= 0
|
||||
update!(opt, x, gs[x])
|
||||
end
|
||||
end
|
||||
|
||||
# Added as an internal API but everyone started using it.
|
||||
function _update_params!(opt, xs)
|
||||
depwarn("`_update_params!` is deprecated, use `update!` instead.", :stop)
|
||||
for x in xs
|
||||
update!(opt, x, Tracker.grad(x))
|
||||
x.tracker.grad = Tracker.zero_grad!(x.tracker.grad)
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -15,16 +26,6 @@ call(f, xs...) = f(xs...)
|
|||
runall(f) = f
|
||||
runall(fs::AbstractVector) = () -> foreach(call, fs)
|
||||
|
||||
# The AD generates fairly large backtraces that are unhelpful if you interrupt
|
||||
# while training; this just cleans that up.
|
||||
macro interrupts(ex)
|
||||
:(try $(esc(ex))
|
||||
catch e
|
||||
e isa InterruptException || rethrow()
|
||||
throw(e)
|
||||
end)
|
||||
end
|
||||
|
||||
struct StopException <: Exception end
|
||||
"""
|
||||
stop()
|
||||
|
@ -63,13 +64,14 @@ The callback can call `Flux.stop()` to interrupt the training loop.
|
|||
Multiple optimisers and callbacks can be passed to `opt` and `cb` as arrays.
|
||||
"""
|
||||
function train!(loss, ps, data, opt; cb = () -> ())
|
||||
ps = Params(ps)
|
||||
cb = runall(cb)
|
||||
opt = runall(opt)
|
||||
@progress for d in data
|
||||
try
|
||||
l = loss(d...)
|
||||
@interrupts back!(l)
|
||||
update!(opt, ps)
|
||||
gs = gradient(ps) do
|
||||
loss(d...)
|
||||
end
|
||||
update!(opt, ps, gs)
|
||||
if cb() == :stop
|
||||
depwarn("Use of `:stop` is deprecated; use `Flux.stop()` instead", :stop)
|
||||
break
|
||||
|
|
|
@ -1,111 +0,0 @@
|
|||
module Tracker
|
||||
|
||||
using MacroTools
|
||||
using MacroTools: @q, @forward
|
||||
|
||||
import Base: ==
|
||||
|
||||
export TrackedArray, TrackedVector, TrackedMatrix, Params, gradient,
|
||||
param, back!
|
||||
|
||||
tracker(x) = nothing
|
||||
|
||||
istracked(x) = tracker(x) ≠ nothing
|
||||
isleaf(x) = !istracked(x) || isleaf(tracker(x))
|
||||
grad(x) = grad(tracker(x))
|
||||
grad(::Nothing) = nothing
|
||||
data(x) = x
|
||||
|
||||
struct Call{F,As<:Tuple}
|
||||
func::F
|
||||
args::As
|
||||
end
|
||||
|
||||
Call(f::F, args::T) where {F,T} = Call{F,T}(f, args)
|
||||
Call() = Call(nothing, ())
|
||||
|
||||
# When deserialising, the object_id changes
|
||||
a::Call == b::Call = a.func == b.func && a.args == b.args
|
||||
|
||||
@inline (c::Call)() = c.func(data.(c.args)...)
|
||||
|
||||
mutable struct Tracked{T}
|
||||
ref::UInt32
|
||||
f::Call
|
||||
isleaf::Bool
|
||||
grad::T
|
||||
Tracked{T}(f::Call) where T = new(0, f, false)
|
||||
Tracked{T}(f::Call, grad::T) where T = new(0, f, false, grad)
|
||||
Tracked{T}(f::Call{Nothing}, grad::T) where T = new(0, f, true, grad)
|
||||
end
|
||||
|
||||
istracked(x::Tracked) = true
|
||||
isleaf(x::Tracked) = x.f == Call()
|
||||
grad(x::Tracked) = x.grad
|
||||
|
||||
track(f::Call, x) = Tracked{typeof(x)}(f)
|
||||
|
||||
function _forward end
|
||||
|
||||
function track(f::F, xs...; kw...) where F
|
||||
y, back = _forward(f, xs...; kw...)
|
||||
track(Call(back, tracker.(xs)), y)
|
||||
end
|
||||
|
||||
macro grad(ex)
|
||||
@capture(shortdef(ex), (name_(args__) = body_) |
|
||||
(name_(args__) where {T__} = body_)) || error("Need a function definition")
|
||||
T == nothing && (T = [])
|
||||
isexpr(name, :(::)) || (name = :(::typeof($name)))
|
||||
insert!(args, 1+isexpr(args[1], :parameters) , name)
|
||||
@q(Tracker._forward($(args...)) where $(T...) = $body) |> esc
|
||||
end
|
||||
|
||||
include("idset.jl")
|
||||
include("back.jl")
|
||||
include("numeric.jl")
|
||||
include("lib/real.jl")
|
||||
include("lib/array.jl")
|
||||
|
||||
"""
|
||||
hook(f, x) -> x′
|
||||
|
||||
Hook into gradient backpropagation. `x` is unmodified, but when backpropagating
|
||||
`f` will be applied to the incoming gradient. For example, `hook(-, x)` will reverse
|
||||
the sign of the gradient applied to `x`."""
|
||||
hook(f, x) = istracked(x) ? track(hook, f, x) : x
|
||||
@grad hook(f, x) = data(x), Δ -> (nothing, f(Δ))
|
||||
|
||||
"""
|
||||
checkpoint(f, args...)
|
||||
|
||||
Behaves like `f(args...)`, but avoids storing the intermediate values needed for
|
||||
calculating gradients. Instead, `f(args...)` will be called again during the
|
||||
backward pass. This can be used to save memory in larger models.
|
||||
"""
|
||||
checkpoint(f, args...) = track(checkpoint, f, args...)
|
||||
|
||||
@grad function checkpoint(f, args...)
|
||||
data(f(args...)), function (Δ)
|
||||
y, back = forward(f, args...)
|
||||
(nothing, back(Δ)...)
|
||||
end
|
||||
end
|
||||
|
||||
nobacksies(f, x) = track(nobacksies, f, x)
|
||||
nobacksies(f, xs::Tuple) = map(x -> nobacksies(f, x), xs)
|
||||
@grad nobacksies(f::Symbol, x) = data(x), Δ -> error("Nested AD not defined for $f")
|
||||
@grad nobacksies(f::String, x) = data(x), Δ -> error(f)
|
||||
|
||||
param(x::Number) = TrackedReal(float(x))
|
||||
param(xs::AbstractArray) = TrackedArray(float.(xs))
|
||||
|
||||
@grad identity(x) = data(x), Δ -> (Δ,)
|
||||
param(x::TrackedReal) = track(identity, x)
|
||||
param(x::TrackedArray) = track(identity, x)
|
||||
|
||||
import Adapt: adapt, adapt_structure
|
||||
|
||||
adapt_structure(T, xs::TrackedArray) = param(adapt(T, data(xs)))
|
||||
|
||||
end
|
|
@ -1,183 +0,0 @@
|
|||
init_grad(x) = zero(x)
|
||||
zero_grad!(x) = zero(x)
|
||||
zero_grad!(x::AbstractArray) = (x .= 0)
|
||||
|
||||
scan(c::Call) = foreach(scan, c.args)
|
||||
|
||||
function scan(x::Tracked)
|
||||
x.isleaf && return
|
||||
ref = x.ref += 1
|
||||
if ref == 1
|
||||
scan(x.f)
|
||||
isdefined(x, :grad) && (x.grad = zero_grad!(x.grad))
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function scan(x)
|
||||
istracked(x) && scan(tracker(x))
|
||||
return
|
||||
end
|
||||
|
||||
function back_(c::Call, Δ, once)
|
||||
Δs = c.func(Δ)
|
||||
(Δs isa Tuple && length(Δs) >= length(c.args)) ||
|
||||
error("Gradient is not a tuple of length $(length(c.args))")
|
||||
foreach((x, d) -> back(x, d, once), c.args, data.(Δs))
|
||||
end
|
||||
|
||||
back_(::Call{Nothing}, Δ, once) = nothing
|
||||
back_(::Call{Missing}, Δ, once) = error("`back!` was already used")
|
||||
|
||||
accum!(x, Δ) = x .+ Δ
|
||||
accum!(x::AbstractArray, Δ) = (x .+= Δ)
|
||||
|
||||
function back(x::Tracked, Δ, once)
|
||||
x.isleaf && (x.grad = accum!(x.grad, Δ); return)
|
||||
ref = x.ref -= 1
|
||||
grad = if isdefined(x, :grad)
|
||||
x.grad = accum!(x.grad, Δ)
|
||||
elseif ref > 0
|
||||
x.grad = Δ
|
||||
else
|
||||
Δ
|
||||
end
|
||||
if ref == 0
|
||||
back_(x.f, grad, once)
|
||||
once && !x.isleaf && (x.f = Call(missing, ()))
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
back(::Nothing, Δ, once) = return
|
||||
|
||||
# Interface methods
|
||||
|
||||
# TODO: if an error occurs in `back` the refcounts will be broken
|
||||
# and `back` will silently fail to update.
|
||||
# (but only if you re-use intermediate values between passes)
|
||||
# Refcounts are also probably not safe in some situations (e.g. back called
|
||||
# from within a backpropagator)
|
||||
|
||||
function back!(x, Δ; once = true)
|
||||
istracked(x) || return
|
||||
scan(x)
|
||||
back(tracker(x), Δ, once)
|
||||
return
|
||||
end
|
||||
|
||||
function gradient_(f, xs...)
|
||||
xs = param.(data.(xs))
|
||||
l = f(xs...)
|
||||
losscheck(l)
|
||||
back!(l)
|
||||
nobacksies("Use `gradient(...; nest = true)` for nested derivatives",
|
||||
grad.(xs))
|
||||
end
|
||||
|
||||
# Out-of-place gradients
|
||||
|
||||
struct Params
|
||||
order::Vector{Any}
|
||||
params::IdSet{Any}
|
||||
Params() = new([], IdSet())
|
||||
end
|
||||
|
||||
@forward Params.order Base.iterate, Base.length
|
||||
|
||||
function Base.push!(ps::Params, x)
|
||||
if !(x in ps.params)
|
||||
push!(ps.order, x)
|
||||
push!(ps.params, x)
|
||||
end
|
||||
return ps
|
||||
end
|
||||
|
||||
Base.push!(ps::Params, x...) = (foreach(x -> push!(ps, x), x); ps)
|
||||
|
||||
Params(xs) = push!(Params(), xs...)
|
||||
|
||||
function Base.show(io::IO, ps::Params)
|
||||
print(io, "Params([")
|
||||
join(io, ps.order, ", ")
|
||||
print(io, "])")
|
||||
end
|
||||
|
||||
struct Grads
|
||||
grads::IdDict{Any,Any}
|
||||
end
|
||||
|
||||
Base.show(io::IO, ps::Grads) = println(io, "Grads(...)")
|
||||
|
||||
Grads() = Grads(IdDict())
|
||||
|
||||
@forward Grads.grads Base.setindex!, Base.haskey, Base.length, Base.iterate
|
||||
|
||||
Grads(ps::Params) = Grads(IdDict(tracker(p) => init_grad(data(p)) for p in ps))
|
||||
|
||||
Base.getindex(g::Grads, x::Tracked) = g.grads[x]
|
||||
|
||||
function Base.getindex(g::Grads, x)
|
||||
istracked(x) || error("Object not tracked: $x")
|
||||
g[tracker(x)]
|
||||
end
|
||||
|
||||
accum!(g::Grads, x, Δ) = g[x] = haskey(g, x) ? g[x] .+ Δ : Δ
|
||||
|
||||
function back_(g::Grads, c::Call, Δ)
|
||||
Δs = c.func(Δ)
|
||||
(Δs isa Tuple && length(Δs) >= length(c.args)) ||
|
||||
error("Gradient is not a tuple of length $(length(c.args))")
|
||||
foreach((x, Δ) -> back(g, x, Δ), c.args, Δs)
|
||||
end
|
||||
|
||||
back_(g::Grads, ::Call{Nothing}, Δ) = nothing
|
||||
|
||||
function back(g::Grads, x::Tracked, Δ)
|
||||
x.isleaf && (accum!(g, x, Δ); return)
|
||||
ref = x.ref -= 1
|
||||
if ref > 0 || haskey(g, x)
|
||||
accum!(g, x, Δ)
|
||||
ref == 0 && back_(g, x.f, g[x])
|
||||
else
|
||||
ref == 0 && back_(g, x.f, Δ)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
back(::Grads, ::Nothing, _) = return
|
||||
|
||||
function forward(f, ps::Params)
|
||||
y = f()
|
||||
y, function (Δ)
|
||||
g = Grads(ps)
|
||||
if istracked(y)
|
||||
scan(y)
|
||||
back(g, tracker(y), Δ)
|
||||
end
|
||||
return g
|
||||
end
|
||||
end
|
||||
|
||||
function forward(f, args...)
|
||||
args = param.(args)
|
||||
y, back = forward(() -> f(args...), Params(args))
|
||||
y, Δ -> getindex.(Ref(back(Δ)), args)
|
||||
end
|
||||
|
||||
function losscheck(x)
|
||||
x isa Real || error("Function output is not scalar")
|
||||
isinf(x) && error("Loss is infinite")
|
||||
isnan(x) && error("Loss is NaN")
|
||||
end
|
||||
|
||||
function gradient_nested(f, args...)
|
||||
y, back = forward(f, args...)
|
||||
losscheck(y)
|
||||
return back(1)
|
||||
end
|
||||
|
||||
gradient(f, xs...; nest = false) =
|
||||
nest ? gradient_nested(f, xs...) : gradient_(f, xs...)
|
||||
|
||||
gradient(f, ps::Params) = gradient_nested(f, ps)
|
|
@ -1,28 +0,0 @@
|
|||
struct IdSet{T} <: AbstractSet{T}
|
||||
dict::IdDict{T,Nothing}
|
||||
IdSet{T}() where T = new(IdDict{T,Nothing}())
|
||||
end
|
||||
|
||||
Base.eltype(::IdSet{T}) where T = T
|
||||
|
||||
IdSet() = IdSet{Any}()
|
||||
|
||||
Base.push!(s::IdSet) = s
|
||||
Base.push!(s::IdSet{T}, x::T) where T = (s.dict[x] = nothing; s)
|
||||
Base.delete!(s::IdSet{T}, x::T) where T = (delete!(s.dict, x); s)
|
||||
Base.in(x, s::IdSet) = haskey(s.dict, x)
|
||||
|
||||
IdSet{T}(xs) where T = push!(IdSet{T}(), xs...)
|
||||
|
||||
IdSet(xs) = IdSet{eltype(xs)}(xs)
|
||||
|
||||
Base.collect(s::IdSet) = Base.collect(keys(s.dict))
|
||||
Base.similar(s::IdSet, T::Type) = IdSet{T}()
|
||||
|
||||
@forward IdSet.dict Base.length
|
||||
|
||||
function Base.iterate(v::IdSet, state...)
|
||||
y = Base.iterate(keys(v.dict), state...)
|
||||
y === nothing && return nothing
|
||||
return (y[1], y[2])
|
||||
end
|
|
@ -1,494 +0,0 @@
|
|||
import Base: *
|
||||
|
||||
import LinearAlgebra
|
||||
import LinearAlgebra: inv, \, /
|
||||
|
||||
using Statistics
|
||||
using LinearAlgebra: Transpose, Adjoint, diagm, diag
|
||||
|
||||
struct TrackedArray{T,N,A<:AbstractArray{T,N}} <: AbstractArray{T,N}
|
||||
tracker::Tracked{A}
|
||||
data::A
|
||||
grad::A
|
||||
TrackedArray{T,N,A}(t::Tracked{A}, data::A) where {T,N,A} = new(t, data)
|
||||
TrackedArray{T,N,A}(t::Tracked{A}, data::A, grad::A) where {T,N,A} = new(t, data, grad)
|
||||
end
|
||||
|
||||
data(x::TrackedArray) = x.data
|
||||
tracker(x::TrackedArray) = x.tracker
|
||||
|
||||
TrackedVector{T,A} = TrackedArray{T,1,A}
|
||||
TrackedMatrix{T,A} = TrackedArray{T,2,A}
|
||||
TrackedVecOrMat{T,A} = Union{TrackedVector{T,A},TrackedMatrix{T,A}}
|
||||
|
||||
track(c::Call, x::AbstractArray) = TrackedArray(c, x)
|
||||
|
||||
TrackedArray(c::Call, x::A) where A <: AbstractArray =
|
||||
TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c), x)
|
||||
|
||||
TrackedArray(c::Call, x::A, Δ::A) where A <: AbstractArray =
|
||||
TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c, Δ), x, Δ)
|
||||
|
||||
TrackedArray(x::AbstractArray) = TrackedArray(Call(), x, zero(x))
|
||||
|
||||
Base.eltype(x::Type{<:TrackedArray{T}}) where T <: Real = TrackedReal{T}
|
||||
|
||||
Base.convert(::Type{T}, x::S) where {T<:TrackedArray,S<:T} = x
|
||||
|
||||
Base.convert(::Type{<:TrackedArray}, x::TrackedArray) =
|
||||
error("Not implemented: convert $(typeof(x)) to $T")
|
||||
|
||||
Base.convert(::Type{<:TrackedArray{T,N,A}}, x::AbstractArray) where {T,N,A} =
|
||||
TrackedArray(convert(A, x))
|
||||
|
||||
Base.show(io::IO, t::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} =
|
||||
@isdefined(A) ?
|
||||
print(io, "TrackedArray{…,$A}") :
|
||||
invoke(show, Tuple{IO,DataType}, io, t)
|
||||
|
||||
function Base.summary(io::IO, x::TrackedArray)
|
||||
print(io, "Tracked ")
|
||||
summary(io, data(x))
|
||||
end
|
||||
|
||||
Base.print_array(io::IO, x::TrackedArray) = Base.print_array(io, data(x))
|
||||
|
||||
function Base.show(io::IO, x::TrackedArray)
|
||||
show(io, data(x))
|
||||
print(io, " (tracked)")
|
||||
end
|
||||
|
||||
Base.copy(x::TrackedArray) = x
|
||||
|
||||
Base.setindex!(xs::TrackedArray, v, i...) =
|
||||
error("Can't differentiate `setindex!`")
|
||||
|
||||
back!(::TrackedArray) = error("Value is not scalar; use `back!(sum(x))` or `back!(x, Δ)`")
|
||||
|
||||
function update!(x::TrackedArray, Δ)
|
||||
x.data .+= data(Δ)
|
||||
tracker(x).grad .= 0
|
||||
return x
|
||||
end
|
||||
|
||||
# Fallthrough methods
|
||||
|
||||
for f in :[Base.size, Base.ndims, Base.collect].args
|
||||
@eval @inline $f(x::TrackedArray, a...) = $f(data(x), a...)
|
||||
end
|
||||
|
||||
Base.size(x::TrackedArray, i::Integer, j::Integer, is::Integer...) =
|
||||
size(data(x), i, j, is...)
|
||||
|
||||
Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) =
|
||||
similar(data(x), dims...)
|
||||
|
||||
Base.similar(x::TrackedArray, T::Type) = similar(data(x), T)
|
||||
|
||||
for op in [:(==), :≈]
|
||||
@eval Base.$op(x::TrackedArray, y::AbstractArray) = Base.$op(data(x), y)
|
||||
@eval Base.$op(x::AbstractArray, y::TrackedArray) = Base.$op(x, data(y))
|
||||
@eval Base.$op(x::TrackedArray, y::TrackedArray) = Base.$op(data(x), data(y))
|
||||
end
|
||||
|
||||
# Array Stdlib
|
||||
|
||||
Base.getindex(xs::TrackedArray, i...) = track(getindex, xs, i...)
|
||||
|
||||
@grad function getindex(xs::AbstractArray, i...)
|
||||
data(xs)[i...], function (Δ)
|
||||
Δ′ = zero(xs)
|
||||
Δ′[i...] = data(Δ)
|
||||
(nobacksies(:getindex, Δ′), map(_->nothing, i)...)
|
||||
end
|
||||
end
|
||||
|
||||
Base.view(x::TrackedArray, inds...) = track(Base.view, x, inds...)
|
||||
|
||||
@grad function view(x::AbstractArray, inds...)
|
||||
view(data(x), inds...), function (Δ)
|
||||
grad_output = zero(x)
|
||||
subgrad = view(grad_output, inds...)
|
||||
subgrad[:] = data(Δ)
|
||||
(nobacksies(:view, grad_output), map(_->nothing, inds)...)
|
||||
end
|
||||
end
|
||||
|
||||
Base.:-(xs::TrackedArray) = track(-, xs)
|
||||
|
||||
@grad -(xs) = -data(xs), Δ -> (-Δ,)
|
||||
|
||||
Base.transpose(xs::TrackedArray) = track(transpose, xs)
|
||||
Base.adjoint(xs::TrackedArray) = track(adjoint, xs)
|
||||
|
||||
@grad transpose(xs) = transpose(data(xs)), Δ -> (trim(xs, transpose(Δ)),)
|
||||
@grad adjoint(xs) = data(xs)', Δ -> (trim(xs, Δ'),)
|
||||
|
||||
Base.repeat(xs::TrackedArray; kw...) = track(repeat, xs; kw...)
|
||||
|
||||
@grad function repeat(xs; inner=ntuple(x->1, ndims(xs)), outer=ntuple(x->1, ndims(xs)))
|
||||
repeat(data(xs), inner = inner, outer = outer), function (Δ)
|
||||
Δ′ = zero(xs)
|
||||
S = size(xs)
|
||||
|
||||
# Loop through each element of Δ, calculate source dimensions, accumulate into Δ′
|
||||
for (dest_idx, val) in pairs(IndexCartesian(), data(Δ))
|
||||
# First, round dest_idx[dim] to nearest gridpoint defined by inner[dim], then
|
||||
# wrap around based on original size S.
|
||||
src_idx = [mod1(div(dest_idx[dim] - 1, inner[dim]) + 1, S[dim]) for dim in 1:length(S)]
|
||||
Δ′[src_idx...] += val
|
||||
end
|
||||
(nobacksies(:repeat, Δ′),)
|
||||
end
|
||||
end
|
||||
|
||||
function combinations(xs, n)
|
||||
n < 1 && return [[]]
|
||||
cs = combinations(xs, n-1)
|
||||
[[x, c...] for x in xs, c in cs]
|
||||
end
|
||||
|
||||
for i = 0:2, c = combinations([:AbstractArray, :TrackedArray], i), f = [:hcat, :vcat]
|
||||
cnames = map(_ -> gensym(), c)
|
||||
@eval Base.$f($([:($x::$c) for (x, c) in zip(cnames, c)]...), x::TrackedArray, xs::AbstractArray...) =
|
||||
track($f, $(cnames...), x, xs...)
|
||||
end
|
||||
|
||||
for i = 0:2, c = combinations([:AbstractVecOrMat, :TrackedVecOrMat], i), f = [:hcat, :vcat]
|
||||
cnames = map(_ -> gensym(), c)
|
||||
@eval Base.$f($([:($x::$c{T}) for (x, c) in zip(cnames, c)]...), x::TrackedVecOrMat{T}, xs::AbstractVecOrMat{T}...) where T =
|
||||
track($f, $(cnames...), x, xs...)
|
||||
end
|
||||
|
||||
for i = 0:2, c = combinations([:AbstractVector, :TrackedVector], i), f = [:hcat, :vcat]
|
||||
cnames = map(_ -> gensym(), c)
|
||||
@eval Base.$f($([:($x::$c{T}) for (x, c) in zip(cnames, c)]...), x::TrackedVector{T}, xs::AbstractVector{T}...) where T =
|
||||
track($f, $(cnames...), x, xs...)
|
||||
end
|
||||
|
||||
@grad function vcat(xs...)
|
||||
vcat(data.(xs)...), function (Δ)
|
||||
start = 0
|
||||
Δs = [begin
|
||||
i = map(_ -> :, size(xsi)) |> Base.tail
|
||||
d = Δ[start+1:start+size(xsi,1), i...]
|
||||
start += size(xsi, 1)
|
||||
d
|
||||
end for xsi in xs]
|
||||
return (Δs...,)
|
||||
end
|
||||
end
|
||||
|
||||
@grad function hcat(xs...)
|
||||
hcat(data.(xs)...), function (Δ)
|
||||
start = 0
|
||||
Δs = [begin
|
||||
d = if ndims(xsi) == 1
|
||||
Δ[:, start+1]
|
||||
else
|
||||
i = map(_ -> :, size(xsi)) |> Base.tail |> Base.tail
|
||||
Δ[:, start+1:start+size(xsi,2), i...]
|
||||
end
|
||||
start += size(xsi, 2)
|
||||
d
|
||||
end for xsi in xs]
|
||||
return (Δs...,)
|
||||
end
|
||||
end
|
||||
|
||||
for i = 0:2, c = combinations([:AbstractArray, :TrackedArray], i)
|
||||
cnames = map(_ -> gensym(), c)
|
||||
@eval Base.cat($([:($x::$c) for (x, c) in zip(cnames, c)]...), x::TrackedArray, xs::AbstractArray...; dims) =
|
||||
track(cat, $(cnames...), x, xs..., dims = dims)
|
||||
end
|
||||
|
||||
@grad function cat(Xs...; dims)
|
||||
cat(data.(Xs)..., dims = dims), function (Δ)
|
||||
start = ntuple(i -> 0, Val(ndims(Δ)))
|
||||
Δs = [begin
|
||||
dim_xs = 1:ndims(xs)
|
||||
till_xs = ntuple((i -> i in dims ? (i in dim_xs ? size(xs,i) : 1) : 0), Val(ndims(Δ)))
|
||||
xs_in_Δ = ntuple(i -> till_xs[i] > 0 ? (start[i]+1:start[i]+till_xs[i]) : Colon(), Val(ndims(Δ)))
|
||||
d = reshape(Δ[xs_in_Δ...],size(xs))
|
||||
start = start .+ till_xs
|
||||
d
|
||||
end for xs in Xs]
|
||||
return (Δs...,)
|
||||
end
|
||||
end
|
||||
|
||||
Base.reshape(xs::TrackedArray, dims::Union{Colon,Int64}...) = reshape(xs, dims)
|
||||
Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Union{Int64,Colon}}}) = reshape(xs, Base._reshape_uncolon(xs, dims))
|
||||
Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Int64}}) = track(reshape, xs, dims)
|
||||
|
||||
@grad reshape(xs, dims) = reshape(data(xs), dims), Δ -> (reshape(Δ, size(xs)),nothing)
|
||||
|
||||
Base.permutedims(xs::TrackedArray, dims) = track(permutedims, xs, dims)
|
||||
@grad permutedims(xs, dims) = permutedims(data(xs), dims), Δ -> (permutedims(Δ, invperm(dims)),nothing)
|
||||
|
||||
function _kron(mat1::AbstractMatrix,mat2::AbstractMatrix)
|
||||
m1, n1 = size(mat1)
|
||||
mat1_rsh = reshape(mat1,(1,m1,1,n1))
|
||||
|
||||
m2, n2 = size(mat2)
|
||||
mat2_rsh = reshape(mat2,(m2,1,n2,1))
|
||||
|
||||
return reshape(mat1_rsh.*mat2_rsh, (m1*m2,n1*n2))
|
||||
end
|
||||
|
||||
Base.kron(a::TrackedMatrix, b::TrackedMatrix) = _kron(a, b)
|
||||
Base.kron(a::TrackedMatrix, b::AbstractMatrix) = _kron(a, b)
|
||||
Base.kron(a::AbstractMatrix, b::TrackedMatrix) = _kron(a, b)
|
||||
|
||||
|
||||
inv(A::TrackedArray) = Tracker.track(inv, A)
|
||||
@grad function inv(A)
|
||||
return inv(Tracker.data(A)), function (Δ)
|
||||
Ainv = inv(A)
|
||||
∇A = - Ainv' * Δ * Ainv'
|
||||
return (∇A, )
|
||||
end
|
||||
end
|
||||
|
||||
# (/) rdivide
|
||||
A::TrackedArray / B::TrackedArray = Tracker.track(/, A, B)
|
||||
A::AbstractVecOrMat / B::TrackedArray = Tracker.track(/, A, B)
|
||||
A::TrackedArray / B::AbstractVecOrMat = Tracker.track(/, A, B)
|
||||
@grad function (A / B)
|
||||
return Tracker.data(A) / Tracker.data(B), function (Δ)
|
||||
Binv = inv(B)
|
||||
∇B = - Binv' * A' * Δ * Binv'
|
||||
return (Δ * Binv', ∇B)
|
||||
end
|
||||
end
|
||||
|
||||
# (\) ldivide (left vec divide needs more work to resolve dispatch ambiguity)
|
||||
A::TrackedArray \ B::TrackedArray = Tracker.track(\, A, B)
|
||||
A::AbstractArray \ B::TrackedArray = Tracker.track(\, A, B)
|
||||
A::TrackedArray \ B::AbstractVecOrMat = Tracker.track(\, A, B)
|
||||
@grad function (A \ B)
|
||||
return Tracker.data(A) \ Tracker.data(B), function (Δ)
|
||||
Ainv = inv(A)
|
||||
∇A = - Ainv' * Δ * B' * Ainv'
|
||||
return (∇A, Ainv' * Δ)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
# Reductions
|
||||
|
||||
Base.sum(xs::TrackedArray; dims = :) = track(sum, xs, dims = dims)
|
||||
Base.sum(f::Union{Function,Type},xs::TrackedArray) = sum(f.(xs))
|
||||
|
||||
@grad sum(xs; dims = :) = sum(data(xs), dims = dims),
|
||||
Δ -> (zero(xs) .+ Δ, )
|
||||
|
||||
Base.prod(xs::TrackedArray, dim) = track(prod, xs, dim)
|
||||
Base.prod(xs::TrackedArray) = track(prod, xs)
|
||||
Base.prod(f::Union{Function, Type}, xs::TrackedArray) = prod(f.(xs))
|
||||
|
||||
@grad prod(xs) = prod(data(xs)), Δ -> (prod(xs) ./ xs .* Δ,)
|
||||
@grad prod(xs, dim) = prod(data(xs), dims = dim),
|
||||
Δ -> (nobacksies(:sum,
|
||||
reshape(.*(circshift.([reshape(data(xs), length(xs))], 1:length(xs)-1)...), size(xs)) .* Δ),
|
||||
nothing)
|
||||
|
||||
Base.findfirst(xs::TrackedArray, args...) = findfirst(xs.data, args...)
|
||||
|
||||
Statistics.mean(xs::TrackedArray; dims = :) = track(mean, xs, dims = dims)
|
||||
|
||||
Base.maximum(xs::TrackedArray; dims = :) = track(maximum, xs, dims = dims)
|
||||
Base.minimum(xs::TrackedArray; dims = :) = track(minimum, xs, dims = dims)
|
||||
|
||||
import LinearAlgebra: dot
|
||||
|
||||
dot(xs::TrackedVector, ys::TrackedVector) = track(dot, xs, ys)
|
||||
dot(xs::AbstractVector, ys::TrackedVector) = track(dot, xs, ys)
|
||||
dot(xs::TrackedVector, ys::AbstractVector) = track(dot, xs, ys)
|
||||
|
||||
@grad dot(xs, ys) = dot(data(xs), data(ys)), Δ -> (Δ .* ys, Δ .* xs)
|
||||
|
||||
# Hacks to get std working
|
||||
Statistics.std(x::TrackedArray; dims = :, mean = Statistics.mean(x, dims = dims)) = _std(x,mean,dims)
|
||||
_std(x::TrackedArray, mean, dims) = sqrt.(sum((x .- mean).^2, dims = dims) ./ (mapreduce(i -> size(x,i),*, dims) - 1))
|
||||
_std(x::TrackedArray, mean, ::Colon) = sqrt.(sum((x .- mean).^2) ./ (length(x) - 1))
|
||||
|
||||
LinearAlgebra.norm(x::TrackedArray, p::Real = 2) =
|
||||
sum(abs.(x).^p .+ eps(0f0))^(1/p) # avoid d(sqrt(x))/dx == Inf at 0
|
||||
|
||||
@grad mean(xs; dims = :) = mean(data(xs), dims=dims), Δ -> (_backmean(xs,Δ,dims),)
|
||||
_backmean(xs, Δ, ::Colon) = zero(xs) .+ Δ ./ length(xs)
|
||||
_backmean(xs, Δ, dims) = zero(xs) .+ Δ ./ mapreduce(i -> size(data(xs),i),*,dims)
|
||||
|
||||
@grad function maximum(xs; dims = dims)
|
||||
maximum(data(xs), dims = dims), function (Δ)
|
||||
Δ′ = zero(xs)
|
||||
_, i = findmax(data(xs), dims = dims)
|
||||
Δ′[i] = data(Δ)
|
||||
return (nobacksies(:maximum, Δ′),)
|
||||
end
|
||||
end
|
||||
|
||||
@grad function minimum(xs; dims = dims)
|
||||
minimum(data(xs), dims = dims), function (Δ)
|
||||
Δ′ = zero(xs)
|
||||
_, i = findmin(data(xs), dims = dims)
|
||||
Δ′[i] = data(Δ)
|
||||
return (nobacksies(:minimum, Δ′),)
|
||||
end
|
||||
end
|
||||
|
||||
# BLAS
|
||||
|
||||
LinearAlgebra.diagm(x::Pair{<:Integer, <:TrackedVector}) = track(diagm, x...)
|
||||
@grad diagm(i, x) = diagm(i => data(x)), Δ -> (nothing, diag(Δ, i))
|
||||
|
||||
x::TrackedMatrix * y::AbstractMatrix = track(*, x, y)
|
||||
x::AbstractMatrix * y::TrackedMatrix = track(*, x, y)
|
||||
x::TrackedMatrix * y::TrackedMatrix = track(*, x, y)
|
||||
|
||||
x::TrackedMatrix * y::AbstractVector = track(*, x, y)
|
||||
x::AbstractMatrix * y::TrackedVector = track(*, x, y)
|
||||
x::TrackedMatrix * y::TrackedVector = track(*, x, y)
|
||||
|
||||
x::TrackedVector * y::AbstractVector = track(*, x, y)
|
||||
x::AbstractVector * y::TrackedVector = track(*, x, y)
|
||||
x::TrackedVector * y::TrackedVector = track(*, x, y)
|
||||
|
||||
@grad a::AbstractMatrix * b::AbstractVecOrMat =
|
||||
data(a)*data(b), Δ -> (Δ * transpose(b), transpose(a) * Δ)
|
||||
|
||||
# NNlib
|
||||
|
||||
using NNlib
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, depthwiseconv, maxpool, meanpool
|
||||
|
||||
softmax(xs::TrackedArray) = track(softmax, xs)
|
||||
|
||||
@grad softmax(xs) = softmax(data(xs)), Δ -> (nobacksies(:softmax, ∇softmax(data(Δ), data(xs))),)
|
||||
|
||||
logsoftmax(xs::TrackedArray) = track(logsoftmax, xs)
|
||||
|
||||
@grad logsoftmax(xs) = logsoftmax(data(xs)), Δ -> (nobacksies(:logsoftmax, ∇logsoftmax(data(Δ), data(xs))),)
|
||||
|
||||
depthwiseconv(x::TrackedArray, w::TrackedArray; kw...) = track(depthwiseconv, x, w; kw...)
|
||||
depthwiseconv(x::AbstractArray, w::TrackedArray; kw...) = track(depthwiseconv, x, w; kw...)
|
||||
depthwiseconv(x::TrackedArray, w::AbstractArray; kw...) = track(depthwiseconv, x, w; kw...)
|
||||
|
||||
@grad depthwiseconv(x, w; kw...) =
|
||||
depthwiseconv(data(x), data(w); kw...),
|
||||
Δ -> nobacksies(:depthwiseconv,
|
||||
(NNlib.∇depthwiseconv_data(data.((Δ, x, w))...; kw...),
|
||||
NNlib.∇depthwiseconv_filter(data.((Δ, x, w))...; kw...)))
|
||||
|
||||
conv(x::TrackedArray, w::TrackedArray; kw...) = track(conv, x, w; kw...)
|
||||
conv(x::AbstractArray, w::TrackedArray; kw...) = track(conv, x, w; kw...)
|
||||
conv(x::TrackedArray, w::AbstractArray; kw...) = track(conv, x, w; kw...)
|
||||
|
||||
@grad conv(x, w; kw...) =
|
||||
conv(data(x), data(w); kw...),
|
||||
Δ -> nobacksies(:conv,
|
||||
(NNlib.∇conv_data(data.((Δ, x, w))...; kw...),
|
||||
NNlib.∇conv_filter(data.((Δ, x, w))...; kw...)))
|
||||
|
||||
maxpool(x::TrackedArray, k; kw...) = track(maxpool, x, k; kw...)
|
||||
|
||||
@grad function maxpool(x, k; kw...)
|
||||
y = maxpool(data(x), k; kw...)
|
||||
y, Δ -> (nobacksies(:maxpool, NNlib.∇maxpool(data.((Δ, y, x))..., k; kw...)), nothing)
|
||||
end
|
||||
|
||||
meanpool(x::TrackedArray, k; kw...) = track(meanpool, x, k; kw...)
|
||||
|
||||
@grad function meanpool(x, k; kw...)
|
||||
y = meanpool(data(x), k; kw...)
|
||||
y, Δ -> (nobacksies(:maxpool, NNlib.∇meanpool(data.((Δ, y, x))..., k; kw...)), nothing)
|
||||
end
|
||||
|
||||
# Broadcasting
|
||||
|
||||
using ForwardDiff: Dual, partials, value
|
||||
|
||||
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val(ndims(x))))
|
||||
|
||||
unbroadcast(x::AbstractArray, Δ) =
|
||||
size(x) == size(Δ) ? Δ :
|
||||
length(x) == length(Δ) ? trim(x, Δ) :
|
||||
trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ)))))
|
||||
|
||||
unbroadcast(x::Number, Δ) = sum(Δ)
|
||||
unbroadcast(x::Base.RefValue, _) = nothing
|
||||
|
||||
dual(x, p) = x
|
||||
dual(x::Real, p) = Dual(x, p)
|
||||
|
||||
function partial(f::F, Δ, i, args::Vararg{Any,N}) where {F,N}
|
||||
dargs = ntuple(j -> dual(args[j], i==j), Val(N))
|
||||
return Δ * f(dargs...).partials[1]
|
||||
end
|
||||
|
||||
@inline function ∇broadcast(f::F, args::Vararg{Any,N}) where {F,N}
|
||||
y = broadcast(f, data.(args)...)
|
||||
eltype(y) <: Real || return y
|
||||
eltype(y) == Bool && return y
|
||||
function back(Δ)
|
||||
Δargs = ntuple(i -> partial.(f, Δ, i, args...), Val(N))
|
||||
dxs = map(unbroadcast, args, Δargs)
|
||||
return dxs
|
||||
end
|
||||
# So we can return non-tracked arrays
|
||||
track(Call(back, tracker.(args)), y)
|
||||
end
|
||||
|
||||
using Base.Broadcast: BroadcastStyle, ArrayStyle, Broadcasted, broadcasted
|
||||
|
||||
struct TrackedStyle <: BroadcastStyle end
|
||||
|
||||
Broadcast.BroadcastStyle(::Type{<:Union{TrackedArray,TrackedReal}}) = TrackedStyle()
|
||||
Broadcast.BroadcastStyle(::TrackedStyle, ::BroadcastStyle) = TrackedStyle()
|
||||
|
||||
# We have to re-build the original broadcast struct to get the appropriate array
|
||||
# style. We need this primarily to support CuArrays' broadcasting fixes.
|
||||
broadcast_rebuild(xs) = data(xs)
|
||||
|
||||
broadcast_rebuild(bc::Broadcasted) =
|
||||
broadcasted(bc.f, broadcast_rebuild.(bc.args)...)
|
||||
|
||||
preprocess(x) = x
|
||||
|
||||
function Base.Broadcast.materialize(bc::Broadcasted{TrackedStyle})
|
||||
bc1 = Broadcast.flatten(bc)
|
||||
bc2 = Broadcast.flatten(broadcast_rebuild(bc))
|
||||
∇broadcast(bc2.f, bc1.args...)
|
||||
end
|
||||
|
||||
using Requires
|
||||
|
||||
# https://github.com/FluxML/Flux.jl/issues/353
|
||||
if VERSION < v"1.1.0-DEV.548"
|
||||
@init Requires.isprecompiling() || @eval Base.Broadcast begin
|
||||
function flatten(bc::Broadcasted{Style}) where {Style}
|
||||
isflat(bc) && return bc
|
||||
args = cat_nested(bc)
|
||||
let makeargs = make_makeargs(bc), f = bc.f
|
||||
newf = @inline function(args::Vararg{Any,N}) where N
|
||||
f(makeargs(args...)...)
|
||||
end
|
||||
return Broadcasted{Style}(newf, args, bc.axes)
|
||||
end
|
||||
end
|
||||
@inline function make_makeargs(makeargs, t::Tuple{<:Broadcasted,Vararg{Any}})
|
||||
bc = t[1]
|
||||
let makeargs = make_makeargs(makeargs, tail(t)), f = bc.f
|
||||
let makeargs = make_makeargs(makeargs, bc.args)
|
||||
headargs, tailargs = make_headargs(bc.args), make_tailargs(bc.args)
|
||||
return @inline function(args::Vararg{Any,N}) where N
|
||||
args1 = makeargs(args...)
|
||||
a, b = headargs(args1...), tailargs(args1...)
|
||||
(f(a...), b...)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -1,154 +0,0 @@
|
|||
mutable struct TrackedReal{T<:Real} <: Real
|
||||
data::T
|
||||
tracker::Tracked{T}
|
||||
end
|
||||
|
||||
TrackedReal(x::Real) = TrackedReal(x, Tracked{typeof(x)}(Call(), zero(x)))
|
||||
|
||||
data(x::TrackedReal) = x.data
|
||||
tracker(x::TrackedReal) = x.tracker
|
||||
|
||||
track(f::Call, x::Real) = TrackedReal(x, Tracked{typeof(x)}(f, zero(x)))
|
||||
|
||||
function back!(x::TrackedReal; once = true)
|
||||
isinf(x) && error("Loss is Inf")
|
||||
isnan(x) && error("Loss is NaN")
|
||||
return back!(x, 1, once = once)
|
||||
end
|
||||
|
||||
function update!(x::TrackedReal, Δ)
|
||||
x.data += data(Δ)
|
||||
tracker(x).grad = 0
|
||||
return x
|
||||
end
|
||||
|
||||
function Base.show(io::IO, x::TrackedReal)
|
||||
T = get(io, :typeinfo, Any)
|
||||
show(io, data(x))
|
||||
T <: TrackedReal || print(io, " (tracked)")
|
||||
end
|
||||
|
||||
Base.decompose(x::TrackedReal) = Base.decompose(data(x))
|
||||
|
||||
Base.copy(x::TrackedReal) = x
|
||||
|
||||
Base.convert(::Type{TrackedReal{T}}, x::TrackedReal{T}) where T = x
|
||||
|
||||
Base.convert(::Type{TrackedReal{T}}, x::Real) where T = TrackedReal(convert(T, x))
|
||||
|
||||
Base.convert(::Type{TrackedReal{T}}, x::TrackedReal{S}) where {T,S} =
|
||||
error("Not implemented: convert tracked $S to tracked $T")
|
||||
|
||||
for op in [:(==), :≈, :<, :(<=)]
|
||||
@eval Base.$op(x::TrackedReal, y::Real) = Base.$op(data(x), y)
|
||||
@eval Base.$op(x::Real, y::TrackedReal) = Base.$op(x, data(y))
|
||||
@eval Base.$op(x::TrackedReal, y::TrackedReal) = Base.$op(data(x), data(y))
|
||||
end
|
||||
|
||||
Base.eps(x::TrackedReal) = eps(data(x))
|
||||
Base.eps(::Type{TrackedReal{T}}) where T = eps(T)
|
||||
|
||||
for f in :[isinf, isnan, isfinite].args
|
||||
@eval Base.$f(x::TrackedReal) = Base.$f(data(x))
|
||||
end
|
||||
|
||||
Base.Printf.fix_dec(x::TrackedReal, n::Int, a...) = Base.Printf.fix_dec(data(x), n, a...)
|
||||
|
||||
Base.float(x::TrackedReal) = x
|
||||
|
||||
Base.promote_rule(::Type{TrackedReal{S}},::Type{T}) where {S,T} =
|
||||
TrackedReal{promote_type(S,T)}
|
||||
|
||||
using Random
|
||||
|
||||
for f in :[rand, randn, randexp].args
|
||||
@eval Random.$f(rng::AbstractRNG,::Type{TrackedReal{T}}) where {T} = param(rand(rng,T))
|
||||
end
|
||||
|
||||
using DiffRules, SpecialFunctions, NaNMath
|
||||
|
||||
for (M, f, arity) in DiffRules.diffrules()
|
||||
arity == 1 || continue
|
||||
@eval begin
|
||||
@grad $M.$f(a::Real) =
|
||||
$M.$f(data(a)), Δ -> (Δ * $(DiffRules.diffrule(M, f, :a)),)
|
||||
$M.$f(a::TrackedReal) = track($M.$f, a)
|
||||
end
|
||||
end
|
||||
|
||||
# Work around zero(π) not working, for some reason
|
||||
_zero(::Irrational) = nothing
|
||||
_zero(x) = zero(x)
|
||||
|
||||
for (M, f, arity) in DiffRules.diffrules()
|
||||
arity == 2 || continue
|
||||
da, db = DiffRules.diffrule(M, f, :a, :b)
|
||||
f = :($M.$f)
|
||||
@eval begin
|
||||
@grad $f(a::TrackedReal, b::TrackedReal) = $f(data(a), data(b)), Δ -> (Δ * $da, Δ * $db)
|
||||
@grad $f(a::TrackedReal, b::Real) = $f(data(a), b), Δ -> (Δ * $da, _zero(b))
|
||||
@grad $f(a::Real, b::TrackedReal) = $f(a, data(b)), Δ -> (_zero(a), Δ * $db)
|
||||
$f(a::TrackedReal, b::TrackedReal) = track($f, a, b)
|
||||
$f(a::TrackedReal, b::Real) = track($f, a, b)
|
||||
$f(a::Real, b::TrackedReal) = track($f, a, b)
|
||||
end
|
||||
end
|
||||
|
||||
# Eliminating ambiguity
|
||||
import Base:^
|
||||
|
||||
^(a::TrackedReal, b::Integer) = track(^, a, b)
|
||||
|
||||
# Hack for conversions
|
||||
|
||||
using ForwardDiff: Dual
|
||||
|
||||
(T::Type{<:Real})(x::Dual) = Dual(T(x.value), map(T, x.partials.values))
|
||||
|
||||
# Tuples
|
||||
|
||||
struct TrackedTuple{T<:Tuple}
|
||||
data::T
|
||||
tracker::Tracked{T}
|
||||
end
|
||||
|
||||
data(xs::TrackedTuple) = xs.data
|
||||
tracker(xs::TrackedTuple) = xs.tracker
|
||||
|
||||
accum!(x::Tuple, Δ::Tuple) = accum!.(x, Δ)
|
||||
init_grad(x::Tuple) = init_grad.(x)
|
||||
zero_grad!(x::Tuple) = zero_grad!.(x)
|
||||
|
||||
track(f::Call, xs::Tuple) = TrackedTuple(xs, Tracked{typeof(xs)}(f, zero.(xs)))
|
||||
|
||||
function Base.show(io::IO, xs::TrackedTuple)
|
||||
show(io, data(xs))
|
||||
print(io, " (tracked)")
|
||||
end
|
||||
|
||||
Base.length(x::TrackedTuple) = length(data(x))
|
||||
|
||||
Base.getindex(xs::TrackedTuple, i::Integer) = track(getindex, xs, i)
|
||||
|
||||
@grad function getindex(xs::TrackedTuple, i)
|
||||
data(xs)[i], Δ -> (ntuple(j -> i == j ? Δ : 0, length(xs)), nothing)
|
||||
end
|
||||
|
||||
# Array collection
|
||||
|
||||
function collect(xs)
|
||||
xs = Base.collect(xs)
|
||||
track(Call(collect, (tracker.(xs),)), data.(xs))
|
||||
end
|
||||
|
||||
function scan(c::Call{typeof(collect)})
|
||||
foreach(scan, c.args[1])
|
||||
end
|
||||
|
||||
function back_(c::Call{typeof(collect)}, Δ, once)
|
||||
foreach((x, d) -> back(x, d, once), c.args[1], data(Δ))
|
||||
end
|
||||
|
||||
function back_(g::Grads, c::Call{typeof(collect)}, Δ)
|
||||
foreach((x, Δ) -> back(g, x, Δ), c.args[1], Δ)
|
||||
end
|
|
@ -1,18 +0,0 @@
|
|||
function ngradient(f, xs::AbstractArray...)
|
||||
grads = zero.(xs)
|
||||
for (x, Δ) in zip(xs, grads), i in 1:length(x)
|
||||
δ = sqrt(eps())
|
||||
tmp = x[i]
|
||||
x[i] = tmp - δ/2
|
||||
y1 = f(xs...)
|
||||
x[i] = tmp + δ/2
|
||||
y2 = f(xs...)
|
||||
x[i] = tmp
|
||||
Δ[i] = (y2-y1)/δ
|
||||
end
|
||||
return grads
|
||||
end
|
||||
|
||||
gradcheck(f, xs...) =
|
||||
all(isapprox.(ngradient(f, xs...),
|
||||
data.(gradient(f, xs...)), rtol = 1e-5, atol = 1e-5))
|
|
@ -1,11 +1,13 @@
|
|||
import Adapt: adapt
|
||||
import Adapt: adapt, adapt_storage
|
||||
import .Tracker: IdSet
|
||||
|
||||
children(x) = ()
|
||||
mapchildren(f, x) = x
|
||||
|
||||
children(x::Tuple) = x
|
||||
children(x::NamedTuple) = x
|
||||
mapchildren(f, x::Tuple) = map(f, x)
|
||||
mapchildren(f, x::NamedTuple) = map(f, x)
|
||||
|
||||
function treelike(m::Module, T, fs = fieldnames(T))
|
||||
@eval m begin
|
||||
|
@ -14,11 +16,6 @@ function treelike(m::Module, T, fs = fieldnames(T))
|
|||
end
|
||||
end
|
||||
|
||||
function treelike(T, fs = fieldnames(T))
|
||||
Base.depwarn("`treelike(T)` is deprecated, use `@treelike T`", :treelike)
|
||||
treelike(Base._current_module(), T, fs)
|
||||
end
|
||||
|
||||
macro treelike(T, fs = nothing)
|
||||
fs == nothing || isexpr(fs, :tuple) || error("@treelike T (a, b)")
|
||||
fs = fs == nothing ? [] : [:($(map(QuoteNode, fs.args)...),)]
|
||||
|
@ -69,3 +66,22 @@ gpu_adaptor = identity
|
|||
end
|
||||
|
||||
gpu(x) = mapleaves(gpu_adaptor, x)
|
||||
|
||||
# Precision
|
||||
|
||||
adapt_storage(T::Type{<:Real}, xs::AbstractArray{<:Real}) = convert.(T, xs)
|
||||
|
||||
paramtype(T::Type{<:Real}, m) = mapleaves(x -> adapt(T, x), m)
|
||||
|
||||
f32(m) = paramtype(Float32, m)
|
||||
f64(m) = paramtype(Float64, m)
|
||||
|
||||
# General parameter map
|
||||
|
||||
function mapparams(f, m)
|
||||
mapleaves(m) do x
|
||||
Tracker.istracked(x) ? param(f(Tracker.data(x))) :
|
||||
x isa Union{AbstractArray,Number} ? f(x) :
|
||||
x
|
||||
end
|
||||
end
|
||||
|
|
23
src/utils.jl
23
src/utils.jl
|
@ -10,8 +10,8 @@ zeros(dims...) = Base.zeros(Float32, dims...)
|
|||
|
||||
unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...))
|
||||
|
||||
stack(xs, dim) = cat(dim, unsqueeze.(xs, dim)...)
|
||||
unstack(xs, dim) = [slicedim(xs, dim, i) for i = 1:size(xs, dim)]
|
||||
stack(xs, dim) = cat(unsqueeze.(xs, dim)..., dims=dim)
|
||||
unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
|
||||
|
||||
"""
|
||||
chunk(xs, n)
|
||||
|
@ -139,25 +139,6 @@ function throttle(f, timeout; leading=true, trailing=false)
|
|||
end
|
||||
end
|
||||
|
||||
"""
|
||||
J = jacobian(m,x)
|
||||
|
||||
Calculate the output jacobian `J = d/dx m(x)` such that each row `i` of `J` corresponds to the gradient `J[i,:] = ∇ₓ(m(x)[i])`
|
||||
"""
|
||||
function jacobian(m,x)
|
||||
xp = param(x)
|
||||
y = m(xp)
|
||||
k = length(y)
|
||||
n = length(x)
|
||||
J = Matrix{eltype(x)}(undef,n,k)
|
||||
for i = 1:k
|
||||
Flux.back!(y[i], once = false) # Populate gradient accumulator
|
||||
J[:,i] = xp.grad
|
||||
xp.grad .= 0 # Reset gradient accumulator
|
||||
end
|
||||
J'
|
||||
end
|
||||
|
||||
"""
|
||||
@jit ...
|
||||
|
||||
|
|
|
@ -11,6 +11,8 @@ x = param(randn(5, 5))
|
|||
cx = gpu(x)
|
||||
@test cx isa TrackedArray && cx.data isa CuArray
|
||||
|
||||
@test Flux.onecold(param(gpu([1.,2.,3.]))) == 3
|
||||
|
||||
x = Flux.onehotbatch([1, 2, 3], 1:3)
|
||||
cx = gpu(x)
|
||||
@test cx isa Flux.OneHotMatrix && cx.data isa CuArray
|
||||
|
@ -36,8 +38,16 @@ Flux.back!(sum(l))
|
|||
|
||||
end
|
||||
|
||||
@testset "onecold gpu" begin
|
||||
y = Flux.onehotbatch(ones(3), 1:10) |> gpu;
|
||||
@test Flux.onecold(y) isa CuArray
|
||||
@test y[3,:] isa CuArray
|
||||
end
|
||||
|
||||
if CuArrays.libcudnn != nothing
|
||||
@info "Testing Flux/CUDNN"
|
||||
include("cudnn.jl")
|
||||
include("curnn.jl")
|
||||
if !haskey(ENV, "CI_DISABLE_CURNN_TEST")
|
||||
include("curnn.jl")
|
||||
end
|
||||
end
|
||||
|
|
|
@ -14,3 +14,9 @@ using Test
|
|||
@test FashionMNIST.labels() isa Vector{Int64}
|
||||
|
||||
@test Data.Sentiment.train() isa Vector{Data.Tree{Any}}
|
||||
|
||||
@test Iris.features() isa Matrix
|
||||
@test size(Iris.features()) == (4,150)
|
||||
|
||||
@test Iris.labels() isa Vector{String}
|
||||
@test size(Iris.labels()) == (150,)
|
||||
|
|
|
@ -1,33 +1,75 @@
|
|||
using Test, Random
|
||||
import Flux: activations
|
||||
|
||||
@testset "basic" begin
|
||||
@testset "Chain" begin
|
||||
@test_nowarn Chain(Dense(10, 5, σ), Dense(5, 2))(randn(10))
|
||||
@test_throws DimensionMismatch Chain(Dense(10, 5, σ),Dense(2, 1))(randn(10))
|
||||
# numeric test should be put into testset of corresponding layer
|
||||
@testset "helpers" begin
|
||||
@testset "activations" begin
|
||||
dummy_model = Chain(Dense(10,5,σ),Dense(5,2),softmax)
|
||||
x = rand(10)
|
||||
@test activations(Chain(), x) == []
|
||||
@test activations(dummy_model, x)[1] == dummy_model[1](x)
|
||||
@test activations(dummy_model, x)[2] == x |> dummy_model[1] |> dummy_model[2]
|
||||
@test activations(Chain(identity, x->:foo), x)[2] == :foo # results include `Any` type
|
||||
end
|
||||
end
|
||||
|
||||
@testset "Chain" begin
|
||||
@test_nowarn Chain(Dense(10, 5, σ), Dense(5, 2))(randn(10))
|
||||
@test_throws DimensionMismatch Chain(Dense(10, 5, σ),Dense(2, 1))(randn(10))
|
||||
# numeric test should be put into testset of corresponding layer
|
||||
end
|
||||
|
||||
@testset "Dense" begin
|
||||
@test length(Dense(10, 5)(randn(10))) == 5
|
||||
@test_throws DimensionMismatch Dense(10, 5)(randn(1))
|
||||
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
|
||||
@test_throws MethodError Dense(10, 5).(randn(10)) # avoid broadcasting
|
||||
|
||||
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(1, 1)
|
||||
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
|
||||
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
|
||||
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
|
||||
|
||||
end
|
||||
|
||||
@testset "Diagonal" begin
|
||||
@test length(Flux.Diagonal(10)(randn(10))) == 10
|
||||
@test length(Flux.Diagonal(10)(1)) == 10
|
||||
@test length(Flux.Diagonal(10)(randn(1))) == 10
|
||||
@test_throws DimensionMismatch Flux.Diagonal(10)(randn(2))
|
||||
|
||||
@test Flux.Diagonal(2)([1 2]) == [1 2; 1 2]
|
||||
@test Flux.Diagonal(2)([1,2]) == [1,2]
|
||||
@test Flux.Diagonal(2)([1 2; 3 4]) == [1 2; 3 4]
|
||||
end
|
||||
|
||||
@testset "Maxout" begin
|
||||
# Note that the normal common usage of Maxout is as per the docstring
|
||||
# These are abnormal constructors used for testing purposes
|
||||
|
||||
@testset "Constructor" begin
|
||||
mo = Maxout(() -> identity, 4)
|
||||
input = rand(40)
|
||||
@test mo(input) == input
|
||||
end
|
||||
|
||||
@testset "Dense" begin
|
||||
@test length(Dense(10, 5)(randn(10))) == 5
|
||||
@test_throws DimensionMismatch Dense(10, 5)(randn(1))
|
||||
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
|
||||
@test_throws MethodError Dense(10, 5).(randn(10)) # avoid broadcasting
|
||||
|
||||
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(1, 1)
|
||||
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
|
||||
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
|
||||
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
|
||||
|
||||
@testset "simple alternatives" begin
|
||||
mo = Maxout((x -> x, x -> 2x, x -> 0.5x))
|
||||
input = rand(40)
|
||||
@test mo(input) == 2*input
|
||||
end
|
||||
|
||||
@testset "Diagonal" begin
|
||||
@test length(Flux.Diagonal(10)(randn(10))) == 10
|
||||
@test length(Flux.Diagonal(10)(1)) == 10
|
||||
@test length(Flux.Diagonal(10)(randn(1))) == 10
|
||||
@test_throws DimensionMismatch Flux.Diagonal(10)(randn(2))
|
||||
|
||||
@test Flux.Diagonal(2)([1 2]) == [1 2; 1 2]
|
||||
@test Flux.Diagonal(2)([1,2]) == [1,2]
|
||||
@test Flux.Diagonal(2)([1 2; 3 4]) == [1 2; 3 4]
|
||||
@testset "complex alternatives" begin
|
||||
mo = Maxout((x -> [0.5; 0.1]*x, x -> [0.2; 0.7]*x))
|
||||
input = [3.0 2.0]
|
||||
target = [0.5, 0.7].*input
|
||||
@test mo(input) == target
|
||||
end
|
||||
|
||||
@testset "params" begin
|
||||
mo = Maxout(()->Dense(32, 64), 4)
|
||||
ps = params(mo)
|
||||
@test length(ps) == 8 #4 alts, each with weight and bias
|
||||
end
|
||||
end
|
||||
end
|
||||
|
|
|
@ -4,9 +4,9 @@ using Flux: maxpool, meanpool
|
|||
@testset "Pooling" begin
|
||||
x = randn(Float32, 10, 10, 3, 2)
|
||||
mp = MaxPool((2, 2))
|
||||
@test mp(x) == maxpool(x, (2,2))
|
||||
@test mp(x) == maxpool(x, PoolDims(x, 2))
|
||||
mp = MeanPool((2, 2))
|
||||
@test mp(x) == meanpool(x, (2,2))
|
||||
@test mp(x) == meanpool(x, PoolDims(x, 2))
|
||||
end
|
||||
|
||||
@testset "CNN" begin
|
||||
|
@ -21,3 +21,69 @@ end
|
|||
|
||||
@test size(m(r)) == (10, 5)
|
||||
end
|
||||
|
||||
@testset "asymmetric padding" begin
|
||||
r = ones(Float32, 28, 28, 1, 1)
|
||||
m = Conv((3, 3), 1=>1, relu; pad=(0,1,1,2))
|
||||
m.weight.data[:] .= 1.0
|
||||
m.bias.data[:] .= 0.0
|
||||
y_hat = Flux.data(m(r))[:,:,1,1]
|
||||
@test size(y_hat) == (27, 29)
|
||||
@test y_hat[1, 1] ≈ 6.0
|
||||
@test y_hat[2, 2] ≈ 9.0
|
||||
@test y_hat[end, 1] ≈ 4.0
|
||||
@test y_hat[1, end] ≈ 3.0
|
||||
@test y_hat[1, end-1] ≈ 6.0
|
||||
@test y_hat[end, end] ≈ 2.0
|
||||
end
|
||||
|
||||
@testset "Depthwise Conv" begin
|
||||
r = zeros(Float32, 28, 28, 3, 5)
|
||||
m1 = DepthwiseConv((2, 2), 3=>5)
|
||||
@test size(m1(r), 3) == 15
|
||||
m2 = DepthwiseConv((2, 2), 3)
|
||||
@test size(m2(r), 3) == 3
|
||||
|
||||
x = zeros(Float64, 28, 28, 3, 5)
|
||||
|
||||
m3 = DepthwiseConv((2, 2), 3 => 5)
|
||||
|
||||
@test size(m3(r), 3) == 15
|
||||
|
||||
m4 = DepthwiseConv((2, 2), 3)
|
||||
|
||||
@test size(m4(r), 3) == 3
|
||||
end
|
||||
|
||||
@testset "ConvTranspose" begin
|
||||
x = zeros(Float32, 28, 28, 1, 1)
|
||||
y = Conv((3,3), 1 => 1)(x)
|
||||
x_hat = ConvTranspose((3, 3), 1 => 1)(y)
|
||||
@test size(x_hat) == size(x)
|
||||
end
|
||||
|
||||
@testset "Conv with non quadratic window #700" begin
|
||||
data = zeros(Float32, 7,7,1,1)
|
||||
data[4,4,1,1] = 1
|
||||
|
||||
l = Conv((3,3), 1=>1)
|
||||
expected = zeros(eltype(l.weight),5,5,1,1)
|
||||
expected[2:end-1,2:end-1,1,1] = l.weight
|
||||
@test expected == l(data)
|
||||
|
||||
l = Conv((3,1), 1=>1)
|
||||
expected = zeros(eltype(l.weight),5,7,1,1)
|
||||
expected[2:end-1,4,1,1] = l.weight
|
||||
@test expected == l(data)
|
||||
|
||||
l = Conv((1,3), 1=>1)
|
||||
expected = zeros(eltype(l.weight),7,5,1,1)
|
||||
expected[4,2:end-1,1,1] = l.weight
|
||||
@test expected == l(data)
|
||||
|
||||
@test begin
|
||||
# we test that the next expression does not throw
|
||||
randn(Float32, 10,10,1,1) |> Conv((6,1), 1=>1, Flux.σ)
|
||||
true
|
||||
end
|
||||
end
|
||||
|
|
|
@ -108,4 +108,216 @@ end
|
|||
y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5])
|
||||
@test m(x) == y
|
||||
end
|
||||
|
||||
let m = BatchNorm(32), x = randn(Float32, 416, 416, 32, 1);
|
||||
m(x)
|
||||
@test (@allocated m(x)) < 100_000_000
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@testset "InstanceNorm" begin
|
||||
# helper functions
|
||||
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
|
||||
# begin tests
|
||||
let m = InstanceNorm(2), sizes = (3, 2, 2),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
|
||||
@test m.β.data == [0, 0] # initβ(2)
|
||||
@test m.γ.data == [1, 1] # initγ(2)
|
||||
|
||||
@test m.active
|
||||
|
||||
m(x)
|
||||
|
||||
#julia> x
|
||||
#[:, :, 1] =
|
||||
# 1.0 4.0
|
||||
# 2.0 5.0
|
||||
# 3.0 6.0
|
||||
#
|
||||
#[:, :, 2] =
|
||||
# 7.0 10.0
|
||||
# 8.0 11.0
|
||||
# 9.0 12.0
|
||||
#
|
||||
# μ will be
|
||||
# (1. + 2. + 3.) / 3 = 2.
|
||||
# (4. + 5. + 6.) / 3 = 5.
|
||||
#
|
||||
# (7. + 8. + 9.) / 3 = 8.
|
||||
# (10. + 11. + 12.) / 3 = 11.
|
||||
#
|
||||
# ∴ update rule with momentum:
|
||||
# (1. - .1) * 0 + .1 * (2. + 8.) / 2 = .5
|
||||
# (1. - .1) * 0 + .1 * (5. + 11.) / 2 = .8
|
||||
@test m.μ ≈ [0.5, 0.8]
|
||||
# momentum * var * num_items / (num_items - 1) + (1 - momentum) * sigma_sq
|
||||
# julia> reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
|
||||
# 2-element Array{Float64,1}:
|
||||
# 1.
|
||||
# 1.
|
||||
@test m.σ² ≈ reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
x′ = m(x).data
|
||||
@test isapprox(x′[1], (1 - 0.5) / sqrt(1. + 1f-5), atol = 1.0e-5)
|
||||
end
|
||||
# with activation function
|
||||
let m = InstanceNorm(2, sigmoid), sizes = (3, 2, 2),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
|
||||
affine_shape = collect(sizes)
|
||||
affine_shape[1] = 1
|
||||
|
||||
@test m.active
|
||||
m(x)
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
y = m(x).data
|
||||
@test isapprox(y, data(sigmoid.((x .- expand_inst(m.μ, affine_shape)) ./ sqrt.(expand_inst(m.σ², affine_shape) .+ m.ϵ))), atol = 1.0e-7)
|
||||
end
|
||||
|
||||
let m = InstanceNorm(2), sizes = (2, 4, 1, 2, 3),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
|
||||
y = reshape(m(y), sizes...)
|
||||
@test m(x) == y
|
||||
end
|
||||
|
||||
# check that μ, σ², and the output are the correct size for higher rank tensors
|
||||
let m = InstanceNorm(2), sizes = (5, 5, 3, 4, 2, 6),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
y = m(x)
|
||||
@test size(m.μ) == (sizes[end - 1], )
|
||||
@test size(m.σ²) == (sizes[end - 1], )
|
||||
@test size(y) == sizes
|
||||
end
|
||||
|
||||
# show that instance norm is equal to batch norm when channel and batch dims are squashed
|
||||
let m_inorm = InstanceNorm(2), m_bnorm = BatchNorm(12), sizes = (5, 5, 3, 4, 2, 6),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
@test m_inorm(x) == reshape(m_bnorm(reshape(x, (sizes[1:end - 2]..., :, 1))), sizes)
|
||||
end
|
||||
|
||||
let m = InstanceNorm(32), x = randn(Float32, 416, 416, 32, 1);
|
||||
m(x)
|
||||
@test (@allocated m(x)) < 100_000_000
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
@testset "GroupNorm" begin
|
||||
# begin tests
|
||||
squeeze(x) = dropdims(x, dims = tuple(findall(size(x) .== 1)...)) # To remove all singular dimensions
|
||||
|
||||
let m = GroupNorm(4,2), sizes = (3,4,2),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
|
||||
@test m.β.data == [0, 0, 0, 0] # initβ(32)
|
||||
@test m.γ.data == [1, 1, 1, 1] # initγ(32)
|
||||
|
||||
@test m.active
|
||||
|
||||
m(x)
|
||||
|
||||
#julia> x
|
||||
#[:, :, 1] =
|
||||
# 1.0 4.0 7.0 10.0
|
||||
# 2.0 5.0 8.0 11.0
|
||||
# 3.0 6.0 9.0 12.0
|
||||
#
|
||||
#[:, :, 2] =
|
||||
# 13.0 16.0 19.0 22.0
|
||||
# 14.0 17.0 20.0 23.0
|
||||
# 15.0 18.0 21.0 24.0
|
||||
#
|
||||
# μ will be
|
||||
# (1. + 2. + 3. + 4. + 5. + 6.) / 6 = 3.5
|
||||
# (7. + 8. + 9. + 10. + 11. + 12.) / 6 = 9.5
|
||||
#
|
||||
# (13. + 14. + 15. + 16. + 17. + 18.) / 6 = 15.5
|
||||
# (19. + 20. + 21. + 22. + 23. + 24.) / 6 = 21.5
|
||||
#
|
||||
# μ =
|
||||
# 3.5 15.5
|
||||
# 9.5 21.5
|
||||
#
|
||||
# ∴ update rule with momentum:
|
||||
# (1. - .1) * 0 + .1 * (3.5 + 15.5) / 2 = 0.95
|
||||
# (1. - .1) * 0 + .1 * (9.5 + 21.5) / 2 = 1.55
|
||||
@test m.μ ≈ [0.95, 1.55]
|
||||
|
||||
# julia> mean(var(reshape(x,3,2,2,2),dims=(1,2)).* .1,dims=2) .+ .9*1.
|
||||
# 2-element Array{Tracker.TrackedReal{Float64},1}:
|
||||
# 1.25
|
||||
# 1.25
|
||||
@test m.σ² ≈ mean(squeeze(var(reshape(x,3,2,2,2),dims=(1,2))).*.1,dims=2) .+ .9*1.
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
x′ = m(x).data
|
||||
println(x′[1])
|
||||
@test isapprox(x′[1], (1 - 0.95) / sqrt(1.25 + 1f-5), atol = 1.0e-5)
|
||||
end
|
||||
# with activation function
|
||||
let m = GroupNorm(4,2, sigmoid), sizes = (3, 4, 2),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
|
||||
μ_affine_shape = ones(Int,length(sizes) + 1)
|
||||
μ_affine_shape[end-1] = 2 # Number of groups
|
||||
|
||||
affine_shape = ones(Int,length(sizes) + 1)
|
||||
affine_shape[end-2] = 2 # Channels per group
|
||||
affine_shape[end-1] = 2 # Number of groups
|
||||
affine_shape[1] = sizes[1]
|
||||
affine_shape[end] = sizes[end]
|
||||
|
||||
og_shape = size(x)
|
||||
|
||||
@test m.active
|
||||
m(x)
|
||||
|
||||
testmode!(m)
|
||||
@test !m.active
|
||||
|
||||
y = m(x)
|
||||
x_ = reshape(x,affine_shape...)
|
||||
out = reshape(data(sigmoid.((x_ .- reshape(m.μ,μ_affine_shape...)) ./ sqrt.(reshape(m.σ²,μ_affine_shape...) .+ m.ϵ))),og_shape)
|
||||
@test isapprox(y, out, atol = 1.0e-7)
|
||||
end
|
||||
|
||||
let m = GroupNorm(2,2), sizes = (2, 4, 1, 2, 3),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
|
||||
y = reshape(m(y), sizes...)
|
||||
@test m(x) == y
|
||||
end
|
||||
|
||||
# check that μ, σ², and the output are the correct size for higher rank tensors
|
||||
let m = GroupNorm(4,2), sizes = (5, 5, 3, 4, 4, 6),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
y = m(x)
|
||||
@test size(m.μ) == (m.G,1)
|
||||
@test size(m.σ²) == (m.G,1)
|
||||
@test size(y) == sizes
|
||||
end
|
||||
|
||||
# show that group norm is the same as instance norm when the group size is the same as the number of channels
|
||||
let IN = InstanceNorm(4), GN = GroupNorm(4,4), sizes = (2,2,3,4,5),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
@test IN(x) ≈ GN(x)
|
||||
end
|
||||
|
||||
# show that group norm is the same as batch norm for a group of size 1 and batch of size 1
|
||||
let BN = BatchNorm(4), GN = GroupNorm(4,4), sizes = (2,2,3,4,1),
|
||||
x = param(reshape(collect(1:prod(sizes)), sizes))
|
||||
@test BN(x) ≈ GN(x)
|
||||
end
|
||||
|
||||
end
|
||||
|
|
|
@ -11,3 +11,9 @@ using Test
|
|||
@test onecold(a, labels) == 'C'
|
||||
@test onecold(A, labels) == ['C', 'A', 'D']
|
||||
end
|
||||
|
||||
@testset "onehotbatch indexing" begin
|
||||
y = Flux.onehotbatch(ones(3), 1:10)
|
||||
@test y[:,1] isa Flux.OneHotVector
|
||||
@test y[:,:] isa Flux.OneHotMatrix
|
||||
end
|
||||
|
|
|
@ -4,21 +4,15 @@ using Flux.Tracker
|
|||
using Test
|
||||
@testset "Optimise" begin
|
||||
w = randn(10, 10)
|
||||
@testset for Opt in [ADAMW, ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, Descent, ADAM, Nesterov, RMSProp, Momentum]
|
||||
@testset for opt in [ADAMW(), ADAGrad(0.1), AdaMax(), ADADelta(0.9), AMSGrad(),
|
||||
NADAM(), Descent(0.1), ADAM(), Nesterov(), RMSProp(),
|
||||
Momentum()]
|
||||
w′ = param(randn(10, 10))
|
||||
loss(x) = Flux.mse(w*x, w′*x)
|
||||
opt = Opt(0.001)
|
||||
if opt isa Descent || opt isa ADAGrad
|
||||
opt = Opt(0.1)
|
||||
end
|
||||
if opt isa ADADelta
|
||||
opt = Opt(0.9)
|
||||
end
|
||||
for t = 1: 10^5
|
||||
l = loss(rand(10))
|
||||
back!(l)
|
||||
delta = Optimise.update!(opt, w′.data, w′.grad)
|
||||
w′.data .-= delta
|
||||
θ = Params([w′])
|
||||
θ̄ = gradient(() -> loss(rand(10)), θ)
|
||||
Optimise.update!(opt, θ, θ̄)
|
||||
end
|
||||
@test Flux.mse(w, w′) < 0.01
|
||||
end
|
||||
|
@ -33,7 +27,7 @@ end
|
|||
for t = 1:10^5
|
||||
l = loss(rand(10))
|
||||
back!(l)
|
||||
delta = Optimise.update!(opt, w′.data, w′.grad)
|
||||
delta = Optimise.apply!(opt, w′.data, w′.grad)
|
||||
w′.data .-= delta
|
||||
end
|
||||
@test Flux.mse(w, w′) < 0.01
|
||||
|
@ -59,3 +53,36 @@ end
|
|||
cbs()
|
||||
@test x == 1
|
||||
end
|
||||
|
||||
@testset "ExpDecay" begin
|
||||
w = randn(10, 10)
|
||||
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
|
||||
w1 = param(randn(10,10))
|
||||
loss(x) = Flux.mse(w*x, w1*x)
|
||||
flag = 1
|
||||
decay_steps = []
|
||||
for t = 1:10^5
|
||||
l = loss(rand(10))
|
||||
back!(l)
|
||||
prev_eta = o.eta
|
||||
prev_grad = collect(w1.grad)
|
||||
delta = Optimise.apply!(o, w1.data, w1.grad)
|
||||
w1.data .-= delta
|
||||
new_eta = o.eta
|
||||
if new_eta != prev_eta
|
||||
push!(decay_steps, t)
|
||||
end
|
||||
array = fill(o.eta, size(prev_grad))
|
||||
if array .* prev_grad != delta
|
||||
flag = 0
|
||||
end
|
||||
end
|
||||
@test flag == 1
|
||||
# Test to check if decay happens at decay steps. Eta reaches clip value eventually.
|
||||
ground_truth = []
|
||||
for i in 1:11
|
||||
push!(ground_truth, 1000*i) # Expected decay steps for this example.
|
||||
end
|
||||
@test decay_steps == ground_truth
|
||||
@test o.eta == o.clip
|
||||
end
|
||||
|
|
303
test/tracker.jl
303
test/tracker.jl
|
@ -1,308 +1,15 @@
|
|||
using Flux
|
||||
using Flux.Tracker, Test, NNlib
|
||||
using Flux.Tracker: TrackedReal, gradient, gradcheck, grad, checkpoint
|
||||
using NNlib: conv, depthwiseconv
|
||||
using Printf: @sprintf
|
||||
using LinearAlgebra: diagm, dot, LowerTriangular, norm
|
||||
using Statistics: mean, std
|
||||
using Random
|
||||
# using StatsBase
|
||||
using Flux, Test
|
||||
using Tracker: gradcheck
|
||||
|
||||
gradtest(f, xs::AbstractArray...) = gradcheck((xs...) -> sum(sin.(f(xs...))), xs...)
|
||||
gradtest(f, dims...) = gradtest(f, rand.(Float64, dims)...)
|
||||
@testset "Tracker" begin
|
||||
@test gradtest((x, W, b) -> σ.(W*x .+ b), 5, (2,5), 2)
|
||||
@test gradtest((x, W, b) -> σ.(W*x .+ b), (5,3), (2,5), 2)
|
||||
@test gradtest((x, W, b) -> logσ.(W*x .+ b), 5, (2,5), 2)
|
||||
@test gradtest((x, W, b) -> logσ.(W*x .+ b), (5,3), (2,5), 2)
|
||||
@test gradtest((w, x) -> w'*x, randn(Float64,10, 2), randn(Float64,10))
|
||||
@test gradtest((w, x) -> w*x', randn(Float64,5,5), randn(Float64,5,5))
|
||||
@test gradtest(x -> sum(x, dims = (2, 3)), (3,4,5))
|
||||
@test gradtest(x -> sum(x, dims = 1), randn(Float64,2,3))
|
||||
@test gradtest(x -> sum(x, dims = [1,2]), randn(Float64,2,3))
|
||||
@test gradtest(x -> sum(x), randn(Float64,2,3))
|
||||
@test gradtest(x -> prod(x, dims=(2, 3)), (3,4,5))
|
||||
@test gradtest(x -> prod(x), (3,4,5))
|
||||
|
||||
@test gradtest(x -> softmax(x).*(1:3), 3)
|
||||
@test gradtest(x -> softmax(x).*(1:3), (3,5))
|
||||
@test gradtest(x -> logsoftmax(x).*(1:3), 3)
|
||||
@test gradtest(x -> logsoftmax(x).*(1:3), (3,5))
|
||||
@testset "Tracker" begin
|
||||
|
||||
@test gradtest(Flux.mse, rand(5,5), rand(5, 5))
|
||||
@test gradtest(Flux.crossentropy, rand(5,5), rand(5, 5))
|
||||
|
||||
@test gradtest(x -> x', rand(5))
|
||||
|
||||
@testset "indexing & slicing" begin
|
||||
gradtest(x->view(x, 1:2, 1:2), rand(4, 4))
|
||||
end
|
||||
|
||||
function promotiontest(f, A, B, C)
|
||||
r0 = f(A, B, C)
|
||||
r1 = f(param(A), B, C)
|
||||
r2 = f(A, param(B), C)
|
||||
r3 = f(A, B, param(C))
|
||||
r4 = f(param(A), param(B), param(C))
|
||||
|
||||
@test !isa(r0, TrackedArray)
|
||||
@test all(isa.([r1,r2,r3,r4], TrackedArray))
|
||||
@test r1 == r2 == r3 == r4
|
||||
@test r0 == Flux.data(r4)
|
||||
end
|
||||
|
||||
@testset "concat" begin
|
||||
cat1(x...) = cat(x..., dims = 1)
|
||||
cat2(x...) = cat(x..., dims = 2)
|
||||
|
||||
@testset for vcatf in [vcat, cat1]
|
||||
@test gradtest(vcatf, rand(5), rand(3))
|
||||
@test gradtest(vcatf, rand(5), rand(3), rand(8))
|
||||
@test gradtest(vcatf, rand(5)', rand(5)')
|
||||
@test gradtest(vcatf, rand(5,2), rand(3,2), rand(8,2))
|
||||
@test gradtest(vcatf, rand(5,2,3), rand(3,2,3), rand(8,2,3))
|
||||
@test gradtest(vcatf, rand(5), rand(3,1))
|
||||
@test gradtest(vcatf, rand(5)', rand(2,5))
|
||||
end
|
||||
|
||||
|
||||
@testset for hcatf in [hcat, cat2]
|
||||
@test gradtest(hcatf, rand(5), rand(5))
|
||||
@test gradtest(hcatf, rand(5)', rand(5)')
|
||||
@test gradtest(hcatf, rand(2,5), rand(2,3), rand(2,8))
|
||||
@test gradtest(hcatf, rand(2,5,3), rand(2,3,3), rand(2,8,3))
|
||||
@test gradtest(hcatf, rand(5), rand(5), rand(5,2))
|
||||
@test gradtest(hcatf, rand(5)', rand(1,3))
|
||||
@test gradtest(hcatf, rand(5), rand(5,2))
|
||||
end
|
||||
|
||||
@testset for catf in [vcat, cat1, hcat, cat2, (x...) -> cat(x..., dims = 3), (x...) -> cat(x..., dims = (1,2))]
|
||||
@test gradtest(catf, rand(5))
|
||||
@test gradtest(catf, rand(5)')
|
||||
@test gradtest(catf, rand(2,5))
|
||||
@test gradtest(catf, rand(2,5,3))
|
||||
end
|
||||
|
||||
@test gradtest((x...) -> cat(x..., dims = 3), rand(2,5,2), rand(2,5,3), rand(2,5,4))
|
||||
|
||||
@testset "cat($dim, ...)" for dim in 3:5
|
||||
catdim = (x...) -> cat(x..., dims = dim)
|
||||
@test gradtest(catdim, rand(5), rand(5), rand(5))
|
||||
@test gradtest(catdim, rand(2,5), rand(2,5), rand(2,5))
|
||||
@test gradtest(catdim, rand(2,5,3), rand(2,5,3), rand(2,5,3))
|
||||
end
|
||||
|
||||
@test !isa(vcat(rand(2)), TrackedArray)
|
||||
@test !isa(hcat(rand(2)), TrackedArray)
|
||||
@test !isa(cat(rand(2), dims=1), TrackedArray)
|
||||
|
||||
@test gradtest((a,b)->cat(a, b, dims = (2,3,5)), rand(2,3), rand(2,4,2,1))
|
||||
|
||||
@testset "promotiontest" begin
|
||||
@testset for fcat in [hcat, vcat, (x...) -> cat(x..., dims = 3), (x...) -> cat(x..., dims = (1,2))]
|
||||
promotiontest(fcat, rand(2), rand(2), rand(2))
|
||||
promotiontest(fcat, rand(2)', rand(2)', rand(2)')
|
||||
promotiontest(fcat, rand(2,2), rand(2,2), rand(2,2))
|
||||
promotiontest(fcat, rand(2,2,2), rand(2,2,2), rand(2,2,2))
|
||||
end
|
||||
|
||||
promotiontest(vcat, rand(1,2), rand(2)', rand(2,2))
|
||||
promotiontest(hcat, rand(2,1), rand(2), rand(2,2))
|
||||
promotiontest(vcat, rand(3,4,5), rand(1,4,5), rand(2,4,5))
|
||||
promotiontest(hcat, rand(4,3,5), rand(4,1,5), rand(4,2,5))
|
||||
promotiontest((x...) -> cat(x..., dims = 3), rand(4,5,3), rand(4,5,1), rand(4,5,2))
|
||||
end
|
||||
@test gradtest(x -> Flux.normalise(x), rand(4,3))
|
||||
@test gradtest(x -> Flux.normalise(x, dims = 2), rand(3,4))
|
||||
|
||||
end
|
||||
|
||||
@test gradtest(x -> permutedims(x, [3,1,2]), rand(4,5,6))
|
||||
|
||||
@test gradtest(x -> repeat(x; inner=2), rand(5))
|
||||
@test gradtest(x -> repeat(x; inner=2, outer=3), rand(5))
|
||||
@test gradtest(x -> repeat(x; inner=(2,2,1), outer=(1,1,3)), rand(5,4,3))
|
||||
|
||||
@test gradtest(kron, rand(5), rand(3))
|
||||
@test gradtest(kron, rand(5), rand(3), rand(8))
|
||||
@test gradtest(kron, rand(5,1), rand(3,1))
|
||||
@test gradtest(kron, rand(5,1), rand(3,1), rand(8,1))
|
||||
@test gradtest(kron, rand(5,2), rand(3,2), rand(8,2))
|
||||
|
||||
@test gradtest(x -> diagm(0 => x), rand(3))
|
||||
|
||||
@test gradtest(W -> inv(log.(W * W)), (5,5))
|
||||
@test gradtest((A, B) -> A / B , (1,5), (5,5))
|
||||
@test gradtest((A, B) -> log.(A * A) / exp.(B * B), (5,5), (5,5))
|
||||
@test gradtest((A, B) -> log.(A * A) \ exp.(B * B), (5,5), (5,5))
|
||||
|
||||
@testset "mean" begin
|
||||
@test gradtest(mean, rand(2, 3))
|
||||
|
||||
@test gradtest(x -> mean(x, dims=1), rand(2, 3))
|
||||
@test gradtest(x -> mean(x, dims=2), rand(2, 3))
|
||||
@test gradtest(x -> mean(x, dims=3), rand(2, 3, 4))
|
||||
|
||||
@test gradtest(x -> mean(x, dims=[1, 2]), rand(2, 3, 4))
|
||||
end
|
||||
|
||||
@testset "maximum" begin
|
||||
@test gradtest(maximum, rand(2, 3))
|
||||
|
||||
@test gradtest(x -> maximum(x, dims=1), rand(2, 3))
|
||||
@test gradtest(x -> maximum(x, dims=2), rand(2, 3))
|
||||
@test gradtest(x -> maximum(x, dims=3), rand(2, 3, 4))
|
||||
|
||||
@test gradtest(x -> maximum(x, dims=[1, 2]), rand(2, 3, 4))
|
||||
end
|
||||
|
||||
@testset "minimum" begin
|
||||
@test gradtest(minimum, rand(2, 3))
|
||||
|
||||
@test gradtest(x -> minimum(x, dims=1), rand(2, 3))
|
||||
@test gradtest(x -> minimum(x, dims=2), rand(2, 3))
|
||||
@test gradtest(x -> minimum(x, dims=3), rand(2, 3, 4))
|
||||
|
||||
@test gradtest(x -> minimum(x, dims=[1, 2]), rand(2, 3, 4))
|
||||
end
|
||||
|
||||
@test gradtest(x -> std(x), rand(5,5))
|
||||
@test gradtest(x -> std(x, dims = 1), rand(5,5))
|
||||
|
||||
@test gradtest((x, y) -> x .* y, rand(5), rand(5))
|
||||
@test gradtest(dot, rand(5), rand(5))
|
||||
|
||||
@test gradtest(norm, rand(5))
|
||||
|
||||
@test gradtest(rand(5)) do x
|
||||
y = x.^2
|
||||
2y + x
|
||||
end
|
||||
|
||||
@test gradtest(conv, rand(10, 3, 2), randn(Float64,2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64,2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 3, 2))
|
||||
|
||||
@test gradtest(depthwiseconv, rand(10,10,3,2), randn(2, 2, 2, 3))
|
||||
|
||||
@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> maxpool(x, (2,2,2)), rand(10, 10, 10, 3, 2))
|
||||
|
||||
@test gradtest(x -> meanpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> meanpool(x, (2,2,2)), rand(5, 5, 5, 3, 2))
|
||||
|
||||
@test gradtest(x -> Float64.(x), 5)
|
||||
|
||||
@testset "equality & order" begin
|
||||
# TrackedReal
|
||||
@test param(2)^2 == param(4)
|
||||
@test param(2)^2 == 4
|
||||
@test 4 == param(2)^2
|
||||
|
||||
@test param(2)^2 ≈ param(4)
|
||||
@test param(2)^2 ≈ 4
|
||||
@test 4 ≈ param(2)^2
|
||||
|
||||
@test (param([1,2,3]) .< 2) == [true, false, false]
|
||||
@test (param([1,2,3]) .<= 2) == [true, true, false]
|
||||
@test (2 .> param([1,2,3])) == [true, false, false]
|
||||
@test (2 .>= param([1,2,3])) == [true, true, false]
|
||||
|
||||
# TrackedArray
|
||||
@test param([1,2,3]).^2 == param([1,4,9])
|
||||
@test [1,2,3].^2 == param([1,4,9])
|
||||
@test param([1,2,3]).^2 == [1,4,9]
|
||||
|
||||
@test param([1,2,3]).^2 ≈ param([1,4,9])
|
||||
@test [1,2,3].^2 ≈ param([1,4,9])
|
||||
@test param([1,2,3]).^2 ≈ [1,4,9]
|
||||
end
|
||||
|
||||
@testset "reshape" begin
|
||||
x = reshape(param(rand(2,2,2)), 4, 2)
|
||||
@test x isa TrackedArray
|
||||
@test size(x) == (4,2)
|
||||
x = reshape(param([1]), (1,:))
|
||||
@test x isa TrackedArray
|
||||
@test size(x) == (1,1)
|
||||
x = reshape(param(rand(2)), (2,:))
|
||||
@test x isa TrackedArray
|
||||
@test size(x) == (2,1)
|
||||
x = reshape(param(rand(2,2)), (1,:,2))
|
||||
@test x isa TrackedArray
|
||||
@test size(x) == (1,2,2)
|
||||
end
|
||||
|
||||
@testset "Intermediates" begin
|
||||
x = param([1])
|
||||
l = sum((x .+ x).^2)
|
||||
Flux.back!(l, once = false)
|
||||
@test x.grad == [8]
|
||||
x.grad .= 0
|
||||
Flux.back!(l, once = false)
|
||||
@test x.grad == [8]
|
||||
end
|
||||
|
||||
@testset "Fallbacks" begin
|
||||
xs = param([1 2; 3 4])
|
||||
@test similar(xs) isa Matrix{Float64}
|
||||
end
|
||||
|
||||
@test @sprintf("%.2f", sum(param([1,2,3]))) == "6.00"
|
||||
|
||||
@inferred NNlib.conv(param(rand(10,10,3,2)),randn(Float64,2,2,3,4))
|
||||
|
||||
b = param(rand())
|
||||
Tracker.back!(b)
|
||||
@test Tracker.grad(b) == 1
|
||||
|
||||
@testset "collect" begin
|
||||
x, y = param(2), param(3)
|
||||
xy = Tracker.collect([x, y])
|
||||
@test xy isa TrackedArray{Float64}
|
||||
z = xy[1]*xy[2]
|
||||
back!(z)
|
||||
@test grad.((x,y)) == (3, 2)
|
||||
|
||||
@test gradient(2, 3) do x, y
|
||||
xy = Tracker.collect([x, y])
|
||||
xy[1]*xy[2]
|
||||
end == (3, 2)
|
||||
end
|
||||
|
||||
# Gradient Hooks
|
||||
@testset "Hooks" begin
|
||||
x = param(2)
|
||||
y = Tracker.hook(-, x)
|
||||
back!(y)
|
||||
@test grad(x) == -1
|
||||
end
|
||||
|
||||
@testset "Checkpointing" begin
|
||||
count = 0
|
||||
function mul(a, b)
|
||||
count += 1
|
||||
a * b
|
||||
end
|
||||
@test gradient(x -> mul(5, x), 3)[1] == 5
|
||||
@test count == 1
|
||||
@test gradient(x -> checkpoint(mul, 5, x), 3)[1] == 5
|
||||
@test count == 3
|
||||
end
|
||||
|
||||
@testset "Updates" begin
|
||||
xs = param([1, 2, 3])
|
||||
Tracker.update!(xs, param([4, 5, 6]))
|
||||
@test xs == [5, 7, 9]
|
||||
x = param(3)
|
||||
Tracker.update!(x, param(4))
|
||||
@test x == 7
|
||||
end
|
||||
|
||||
@testset "Params" begin
|
||||
W = param(randn(5, 10))
|
||||
x = rand(10)
|
||||
dW = gradient(W -> sum(W*x), W)[1]
|
||||
gs = gradient(() -> sum(W*x), Tracker.Params([W]))
|
||||
@test gs[W] == dW
|
||||
end
|
||||
|
||||
end #testset
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
using Flux
|
||||
using Flux: throttle, jacobian, glorot_uniform, glorot_normal
|
||||
using Flux: throttle, jacobian, glorot_uniform, glorot_normal, stack, unstack
|
||||
using StatsBase: std
|
||||
using Random
|
||||
using Test
|
||||
|
@ -86,3 +86,28 @@ end
|
|||
m = RNN(10, 5)
|
||||
@test size.(params(m)) == [(5, 10), (5, 5), (5,), (5,)]
|
||||
end
|
||||
|
||||
@testset "Basic Stacking" begin
|
||||
x = randn(3,3)
|
||||
stacked = stack([x, x], 2)
|
||||
@test size(stacked) == (3,2,3)
|
||||
end
|
||||
|
||||
@testset "Precision" begin
|
||||
m = Chain(Dense(10, 5, relu), Dense(5, 2))
|
||||
x = rand(10)
|
||||
@test eltype(m[1].W.data) == Float32
|
||||
@test eltype(m(x).data) == Float32
|
||||
@test eltype(f64(m)(x).data) == Float64
|
||||
@test eltype(f64(m)[1].W.data) == Float64
|
||||
@test eltype(f32(f64(m))[1].W.data) == Float32
|
||||
@test Tracker.isleaf(f32(f64(m))[1].W)
|
||||
end
|
||||
|
||||
@testset "Stacking" begin
|
||||
stacked_array=[ 8 9 3 5; 9 6 6 9; 9 1 7 2; 7 4 10 6 ]
|
||||
unstacked_array=[[8, 9, 9, 7], [9, 6, 1, 4], [3, 6, 7, 10], [5, 9, 2, 6]]
|
||||
@test unstack(stacked_array, 2) == unstacked_array
|
||||
@test stack(unstacked_array, 2) == stacked_array
|
||||
@test stack(unstack(stacked_array, 1), 1) == stacked_array
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue