diff --git a/latest/assets/documenter.css b/latest/assets/documenter.css index 0aa36a9a..dc1b4cf5 100644 --- a/latest/assets/documenter.css +++ b/latest/assets/documenter.css @@ -271,7 +271,7 @@ nav.toc ul.internal { } nav.toc ul.internal li.toplevel { - border-top: 1px solid #c9c9c9; + border-top: 1px solid #909090; font-weight: bold; } diff --git a/latest/community.html b/latest/community.html index 34e2cf29..73e81d97 100644 --- a/latest/community.html +++ b/latest/community.html @@ -6,4 +6,4 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Community

Community

All Flux users are welcome to join our community on the Julia forum, the slack (channel #machine-learning), or Flux's Gitter. If you have questions or issues we'll try to help you out.

If you're interested in hacking on Flux, the source code is open and easy to understand – it's all just the same Julia code you work with normally. You might be interested in our intro issues to get started.

+

Community

Community

All Flux users are welcome to join our community on the Julia forum, the slack (channel #machine-learning), or Flux's Gitter. If you have questions or issues we'll try to help you out.

If you're interested in hacking on Flux, the source code is open and easy to understand – it's all just the same Julia code you work with normally. You might be interested in our intro issues to get started.

diff --git a/latest/data/onehot.html b/latest/data/onehot.html index b62a5704..fbbf7dd3 100644 --- a/latest/data/onehot.html +++ b/latest/data/onehot.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

One-Hot Encoding

One-Hot Encoding

It's common to encode categorical variables (like true, false or cat, dog) in "one-of-k" or "one-hot" form. Flux provides the onehot function to make this easy.

julia> using Flux: onehot
+

One-Hot Encoding

One-Hot Encoding

It's common to encode categorical variables (like true, false or cat, dog) in "one-of-k" or "one-hot" form. Flux provides the onehot function to make this easy.

julia> using Flux: onehot
 
 julia> onehot(:b, [:a, :b, :c])
 3-element Flux.OneHotVector:
diff --git a/latest/gpu.html b/latest/gpu.html
index fc2022c9..4236dd9e 100644
--- a/latest/gpu.html
+++ b/latest/gpu.html
@@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

GPU Support

GPU Support

Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays and CLArrays. Flux doesn't care what array type you use, so we can just plug these in without any other changes.

For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.

using CuArrays
+

GPU Support

GPU Support

Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays. Flux is agnostic to array types, so we simply need to move model weights and data to the GPU and Flux will handle it.

For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.

using CuArrays
 
 W = cu(rand(2, 5)) # a 2×5 CuArray
 b = cu(rand(2))
@@ -22,4 +22,19 @@ d(cu(rand(10))) # CuArray output
 
 m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
 m = mapleaves(cu, m)
-d(cu(rand(10)))

The mnist example contains the code needed to run the model on the GPU; just uncomment the lines after using CuArrays.

+d(cu(rand(10)))

As a convenience, Flux provides the gpu function to convert models and data to the GPU if one is available. By default, it'll do nothing, but loading CuArrays will cause it to move data to the GPU instead.

julia> using Flux, CuArrays
+
+julia> m = Dense(10,5) |> gpu
+Dense(10, 5)
+
+julia> x = rand(10) |> gpu
+10-element CuArray{Float32,1}:
+ 0.800225
+ ⋮
+ 0.511655
+
+julia> m(x)
+Tracked 5-element CuArray{Float32,1}:
+ -0.30535
+ ⋮
+ -0.618002

The analogue cpu is also available for moving models and data back off of the GPU.

``` julia> x = rand(10) |> gpu 10-element CuArray{Float32,1}: 0.235164 ⋮ 0.192538

julia> x |> cpu 10-element Array{Float32,1}: 0.235164 ⋮ 0.192538 ```

diff --git a/latest/index.html b/latest/index.html index 9e4308cb..81e39dd4 100644 --- a/latest/index.html +++ b/latest/index.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Home

Flux: The Julia Machine Learning Library

Flux is a library for machine learning. It comes "batteries-included" with many useful tools built in, but also lets you use the full power of the Julia language where you need it. The whole stack is implemented in clean Julia code (right down to the GPU kernels) and any part can be tweaked to your liking.

Installation

Install Julia 0.6.0 or later, if you haven't already.

Pkg.add("Flux")
+

Home

Flux: The Julia Machine Learning Library

Flux is a library for machine learning. It comes "batteries-included" with many useful tools built in, but also lets you use the full power of the Julia language where you need it. The whole stack is implemented in clean Julia code (right down to the GPU kernels) and any part can be tweaked to your liking.

Installation

Install Julia 0.6.0 or later, if you haven't already.

Pkg.add("Flux")
 # Optional but recommended
-Pkg.update() # Keep your packages are up to date
+Pkg.update() # Keep your packages up to date
 Pkg.test("Flux") # Check things installed correctly

Start with the basics. The model zoo is also a good starting point for many common kinds of models.

diff --git a/latest/models/basics.html b/latest/models/basics.html index f56db8dc..b9e05db6 100644 --- a/latest/models/basics.html +++ b/latest/models/basics.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Basics

Model-Building Basics

Taking Gradients

Consider a simple linear regression, which tries to predict an output array y from an input x. (It's a good idea to follow this example in the Julia repl.)

W = rand(2, 5)
+

Basics

Model-Building Basics

Taking Gradients

Consider a simple linear regression, which tries to predict an output array y from an input x. (It's a good idea to follow this example in the Julia repl.)

W = rand(2, 5)
 b = rand(2)
 
 predict(x) = W*x .+ b
diff --git a/latest/models/layers.html b/latest/models/layers.html
index d776a04d..83968d32 100644
--- a/latest/models/layers.html
+++ b/latest/models/layers.html
@@ -6,103 +6,20 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

Model Reference

Basic Layers

These core layers form the foundation of almost all neural networks.

Flux.ChainType.
Chain(layers...)

Chain multiple layers / functions together, so that they are called in sequence on a given input.

m = Chain(x -> x^2, x -> x+1)
-m(5) == 26
-
-m = Chain(Dense(10, 5), Dense(5, 2))
-x = rand(10)
-m(x) == m[2](m[1](x))

Chain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.

source
Flux.DenseType.
Dense(in::Integer, out::Integer, σ = identity)

Creates a traditional Dense layer with parameters W and b.

y = σ.(W * x .+ b)

The input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length out.

julia> d = Dense(5, 2)
-Dense(5, 2)
-
-julia> d(rand(5))
-Tracked 2-element Array{Float64,1}:
-  0.00257447
-  -0.00449443
source
Flux.Conv2DType.
Conv2D(size, in=>out)
-Conv2d(size, in=>out, relu)

Standard convolutional layer. size should be a tuple like (2, 2). in and out specify the number of input and output channels respectively.

Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a 100×100×3 array, and a batch of 50 would be a 100×100×3×50 array.

Takes the keyword arguments pad and stride.

source

Recurrent Layers

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNFunction.
RNN(in::Integer, out::Integer, σ = tanh)

The most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step.

source
Flux.LSTMFunction.
LSTM(in::Integer, out::Integer, σ = tanh)

Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.

See this article for a good overview of the internals.

source
Flux.RecurType.
Recur(cell)

Recur takes a recurrent cell and makes it stateful, managing the hidden state in the background. cell should be a model of the form:

h, y = cell(h, x...)

For example, here's a recurrent network that keeps a running total of its inputs.

accum(h, x) = (h+x, x)
+

Model Reference

Basic Layers

These core layers form the foundation of almost all neural networks.

Chain
+Dense
+Conv2D

Recurrent Layers

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNFunction.
RNN(in::Integer, out::Integer, σ = tanh)

The most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step.

source
Flux.LSTMFunction.
LSTM(in::Integer, out::Integer, σ = tanh)

Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.

See this article for a good overview of the internals.

source
Flux.RecurType.
Recur(cell)

Recur takes a recurrent cell and makes it stateful, managing the hidden state in the background. cell should be a model of the form:

h, y = cell(h, x...)

For example, here's a recurrent network that keeps a running total of its inputs.

accum(h, x) = (h+x, x)
 rnn = Flux.Recur(accum, 0)
 rnn(2) # 2
 rnn(3) # 3
 rnn.state # 5
 rnn.(1:10) # apply to a sequence
-rnn.state # 60
source

Activation Functions

Non-linearities that go between layers of your model. Most of these functions are defined in NNlib but are available by default in Flux.

Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs), relu.(xs) and so on.

NNlib.σFunction.
σ(x) = 1 / (1 + exp(-x))

Classic sigmoid activation function.

1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠒⠉⠉⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠚⠁⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢀⡔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠜⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠜⠁⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠚⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⢀⡤⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⣀⣀⠤⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-0 │⠋⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  -3                      0                      3
source
NNlib.reluFunction.
relu(x) = max(0, x)

Rectified Linear Unit activation function.

3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-0 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-  -3                      0                      3
source
NNlib.leakyreluFunction.
leakyrelu(x) = max(0.01x, x)

Leaky Rectified Linear Unit activation function. You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01).

 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠴⠁⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠊⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠎⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂│
--1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   -3                      0                      3
source
NNlib.eluFunction.
elu(x, α = 1) =
-  x > 0 ? x : α * (exp(x) - 1)

Exponential Linear Unit activation function. See Fast and Accurate Deep Network Learning by Exponential Linear Units. You can also specify the coefficient explicitly, e.g. elu(x, 1).

 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠴⠁⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠊⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠎⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢒⠖⡗⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠒⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠤⠚⠉⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
--1 │⣀⣀⠤⠤⠤⠤⠔⠒⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   -3                      0                      3
source
NNlib.swishFunction.
swish(x) = x * σ(x)

Self-gated actvation function. See Swish: a Self-Gated Activation Function.

 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠊⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⣒⣒⣒⣒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢒⣒⠶⠒⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂│
-   │⠀⠀⠀⠀⠉⠉⠉⠉⠉⠒⠒⠒⠒⠊⠉⠉⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
--1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
-   -3                      0                      3
source

Normalisation & Regularisation

These layers don't affect the structure of the network but may improve training times or reduce overfitting.

Flux.testmode!Function.
testmode!(m)
-testmode!(m, false)

Put layers like Dropout and BatchNorm into testing mode (or back to training mode with false).

source
Flux.BatchNormType.
BatchNorm(dims...; λ = identity,
+rnn.state # 60
source

Activation Functions

Non-linearities that go between layers of your model. Most of these functions are defined in NNlib but are available by default in Flux.

Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call σ.(xs), relu.(xs) and so on.

NNlib.σFunction.
σ(x) = 1 / (1 + exp(-x))

Classic sigmoid activation function.

source
NNlib.reluFunction.
relu(x) = max(0, x)

Rectified Linear Unit activation function.

source
NNlib.leakyreluFunction.
leakyrelu(x) = max(0.01x, x)

Leaky Rectified Linear Unit activation function. You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01).

source
NNlib.eluFunction.
elu(x, α = 1) =
+  x > 0 ? x : α * (exp(x) - 1)

Exponential Linear Unit activation function. See Fast and Accurate Deep Network Learning by Exponential Linear Units. You can also specify the coefficient explicitly, e.g. elu(x, 1).

source
NNlib.swishFunction.
swish(x) = x * σ(x)

Self-gated actvation function. See Swish: a Self-Gated Activation Function.

source

Normalisation & Regularisation

These layers don't affect the structure of the network but may improve training times or reduce overfitting.

Flux.testmode!Function.
testmode!(m)
+testmode!(m, false)

Put layers like Dropout and BatchNorm into testing mode (or back to training mode with false).

source
Flux.BatchNormType.
BatchNorm(dims...; λ = identity,
           initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1)

Batch Normalization Layer for Dense layer.

See Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

In the example of MNIST, in order to normalize the input of other layer, put the BatchNorm layer before activation function.

m = Chain(
   Dense(28^2, 64),
   BatchNorm(64, λ = relu),
   Dense(64, 10),
   BatchNorm(10),
-  softmax)
source
Flux.DropoutType.
Dropout(p)

A Dropout layer. For each input, either sets that input to 0 (with probability p) or scales it by 1/(1-p). This is used as a regularisation, i.e. it reduces overfitting during training.

Does nothing to the input once in testmode!.

source
Flux.LayerNormType.
LayerNorm(h::Integer)

A normalisation layer designed to be used with recurrent hidden states of size h. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.

source
+ softmax)
source
Flux.DropoutType.
Dropout(p)

A Dropout layer. For each input, either sets that input to 0 (with probability p) or scales it by 1/(1-p). This is used as a regularisation, i.e. it reduces overfitting during training.

Does nothing to the input once in testmode!.

source
Flux.LayerNormType.
LayerNorm(h::Integer)

A normalisation layer designed to be used with recurrent hidden states of size h. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.

source
diff --git a/latest/models/recurrence.html b/latest/models/recurrence.html index 391b682f..4a824a8b 100644 --- a/latest/models/recurrence.html +++ b/latest/models/recurrence.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Recurrence

Recurrent Models

Recurrent Cells

In the simple feedforward case, our model m is a simple function from various inputs xᵢ to predictions yᵢ. (For example, each x might be an MNIST digit and each y a digit label.) Each prediction is completely independent of any others, and using the same x will always produce the same y.

y₁ = f(x₁)
+

Recurrence

Recurrent Models

Recurrent Cells

In the simple feedforward case, our model m is a simple function from various inputs xᵢ to predictions yᵢ. (For example, each x might be an MNIST digit and each y a digit label.) Each prediction is completely independent of any others, and using the same x will always produce the same y.

y₁ = f(x₁)
 y₂ = f(x₂)
 y₃ = f(x₃)
 # ...

Recurrent networks introduce a hidden state that gets carried over each time we run the model. The model now takes the old h as an input, and produces a new h as output, each time we run it.

h = # ... initial state ...
diff --git a/latest/models/regularisation.html b/latest/models/regularisation.html
index d85a8b62..51c54208 100644
--- a/latest/models/regularisation.html
+++ b/latest/models/regularisation.html
@@ -6,19 +6,19 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 
 ga('create', 'UA-36890222-9', 'auto');
 ga('send', 'pageview');
-

Regularisation

Regularisation

Applying regularisation to model parameters is straightforward. We just need to apply an appropriate regulariser, such as norm, to each model parameter and add the result to the overall loss.

For example, say we have a simple regression.

m = Dense(10, 5)
-loss(x, y) = crossentropy(softmax(m(x)), y)

We can regularise this by taking the (L2) norm of the parameters, m.W and m.b.

penalty() = norm(m.W) + norm(m.b)
-loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()

When working with layers, Flux provides the params function to grab all parameters at once. We can easily penalise everything with sum(norm, params).

julia> params(m)
+

Regularisation

Regularisation

Applying regularisation to model parameters is straightforward. We just need to apply an appropriate regulariser, such as vecnorm, to each model parameter and add the result to the overall loss.

For example, say we have a simple regression.

m = Dense(10, 5)
+loss(x, y) = crossentropy(softmax(m(x)), y)

We can regularise this by taking the (L2) norm of the parameters, m.W and m.b.

penalty() = vecnorm(m.W) + vecnorm(m.b)
+loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()

When working with layers, Flux provides the params function to grab all parameters at once. We can easily penalise everything with sum(vecnorm, params).

julia> params(m)
 2-element Array{Any,1}:
  param([0.355408 0.533092; … 0.430459 0.171498])
  param([0.0, 0.0, 0.0, 0.0, 0.0])
 
-julia> sum(norm, params(m))
+julia> sum(vecnorm, params(m))
 26.01749952921026 (tracked)

Here's a larger example with a multi-layer perceptron.

m = Chain(
   Dense(28^2, 128, relu),
   Dense(128, 32, relu),
   Dense(32, 10), softmax)
 
-loss(x, y) = crossentropy(m(x), y) + sum(norm, params(m))
+loss(x, y) = crossentropy(m(x), y) + sum(vecnorm, params(m))
 
 loss(rand(28^2), rand(10))
diff --git a/latest/saving.html b/latest/saving.html new file mode 100644 index 00000000..aa434977 --- /dev/null +++ b/latest/saving.html @@ -0,0 +1,50 @@ + +Saving & Loading · Flux

Saving & Loading

Saving and Loading Models

You may wish to save models so that they can be loaded and run in a later session. The easiest way to do this is via BSON.jl.

Save a model:

julia> using Flux
+
+julia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)
+Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
+
+julia> using BSON: @save
+
+julia> @save "mymodel.bson" model

Load it again:

julia> using Flux
+
+julia> using BSON: @load
+
+julia> @load "mymodel.bson" model
+
+julia> model
+Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)

Models are just normal Julia structs, so it's fine to use any Julia storage format for this purpose. BSON.jl is particularly well supported and most likely to be forwards compatible (that is, models saved now will load in future versions of Flux).

Note

If a saved model's weights are stored on the GPU, the model will not load later on if there is no GPU support available. It's best to move your model to the CPU with cpu(model) before saving it.

Saving Model Weights

In some cases it may be useful to save only the model parameters themselves, and rebuild the model architecture in your code. You can use params(model) to get model parameters. You can also use data.(params) to remove tracking.

julia> using Flux
+
+julia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)
+Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
+
+julia> weights = Tracker.data.(params(model));
+
+julia> using BSON: @save
+
+julia> @save "mymodel.bson" weights

You can easily load parameters back into a model with Flux.loadparams!.

julia> using Flux
+
+julia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)
+Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
+
+julia> using BSON: @load
+
+julia> @load "mymodel.bson" weights
+
+julia> Flux.loadparams!(model, weights)

The new model we created will now be identical to the one we saved parameters for.

Checkpointing

In longer training runs it's a good idea to periodically save your model, so that you can resume if training is interrupted (for example, if there's a power cut). You can do this by saving the model in the callback provided to train!.

using Flux: throttle
+using BSON: @save
+
+m = Chain(Dense(10,5,relu),Dense(5,2),softmax)
+
+evalcb = throttle(30) do
+  # Show loss
+  @save "model-checkpoint.bson" model
+end

This will update the "model-checkpoint.bson" file every thirty seconds.

You can get more advanced by saving a series of models throughout training, for example

@save "model-$(now()).bson" model

will produce a series of models like "model-2018-03-06T02:57:10.41.bson". You could also store the current test set loss, so that it's easy to (for example) revert to an older copy of the model if it starts to overfit.

@save "model-$(now()).bson" model loss = testloss()

You can even store optimiser state alongside the model, to resume training exactly where you left off.

opt = ADAM(params(model))
+@save "model-$(now()).bson" model opt
diff --git a/latest/search.html b/latest/search.html index e37be5bc..2fc782db 100644 --- a/latest/search.html +++ b/latest/search.html @@ -6,4 +6,4 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

Search

Search

Number of results: loading...

    +

    Search

    Search

    Number of results: loading...

      diff --git a/latest/search_index.js b/latest/search_index.js index 59b04052..6207f8c6 100644 --- a/latest/search_index.js +++ b/latest/search_index.js @@ -21,7 +21,7 @@ var documenterSearchIndex = {"docs": [ "page": "Home", "title": "Installation", "category": "section", - "text": "Install Julia 0.6.0 or later, if you haven\'t already.Pkg.add(\"Flux\")\n# Optional but recommended\nPkg.update() # Keep your packages are up to date\nPkg.test(\"Flux\") # Check things installed correctlyStart with the basics. The model zoo is also a good starting point for many common kinds of models." + "text": "Install Julia 0.6.0 or later, if you haven\'t already.Pkg.add(\"Flux\")\n# Optional but recommended\nPkg.update() # Keep your packages up to date\nPkg.test(\"Flux\") # Check things installed correctlyStart with the basics. The model zoo is also a good starting point for many common kinds of models." }, { @@ -133,7 +133,7 @@ var documenterSearchIndex = {"docs": [ "page": "Regularisation", "title": "Regularisation", "category": "section", - "text": "Applying regularisation to model parameters is straightforward. We just need to apply an appropriate regulariser, such as norm, to each model parameter and add the result to the overall loss.For example, say we have a simple regression.m = Dense(10, 5)\nloss(x, y) = crossentropy(softmax(m(x)), y)We can regularise this by taking the (L2) norm of the parameters, m.W and m.b.penalty() = norm(m.W) + norm(m.b)\nloss(x, y) = crossentropy(softmax(m(x)), y) + penalty()When working with layers, Flux provides the params function to grab all parameters at once. We can easily penalise everything with sum(norm, params).julia> params(m)\n2-element Array{Any,1}:\n param([0.355408 0.533092; … 0.430459 0.171498])\n param([0.0, 0.0, 0.0, 0.0, 0.0])\n\njulia> sum(norm, params(m))\n26.01749952921026 (tracked)Here\'s a larger example with a multi-layer perceptron.m = Chain(\n Dense(28^2, 128, relu),\n Dense(128, 32, relu),\n Dense(32, 10), softmax)\n\nloss(x, y) = crossentropy(m(x), y) + sum(norm, params(m))\n\nloss(rand(28^2), rand(10))" + "text": "Applying regularisation to model parameters is straightforward. We just need to apply an appropriate regulariser, such as vecnorm, to each model parameter and add the result to the overall loss.For example, say we have a simple regression.m = Dense(10, 5)\nloss(x, y) = crossentropy(softmax(m(x)), y)We can regularise this by taking the (L2) norm of the parameters, m.W and m.b.penalty() = vecnorm(m.W) + vecnorm(m.b)\nloss(x, y) = crossentropy(softmax(m(x)), y) + penalty()When working with layers, Flux provides the params function to grab all parameters at once. We can easily penalise everything with sum(vecnorm, params).julia> params(m)\n2-element Array{Any,1}:\n param([0.355408 0.533092; … 0.430459 0.171498])\n param([0.0, 0.0, 0.0, 0.0, 0.0])\n\njulia> sum(vecnorm, params(m))\n26.01749952921026 (tracked)Here\'s a larger example with a multi-layer perceptron.m = Chain(\n Dense(28^2, 128, relu),\n Dense(128, 32, relu),\n Dense(32, 10), softmax)\n\nloss(x, y) = crossentropy(m(x), y) + sum(vecnorm, params(m))\n\nloss(rand(28^2), rand(10))" }, { @@ -144,30 +144,6 @@ var documenterSearchIndex = {"docs": [ "text": "" }, -{ - "location": "models/layers.html#Flux.Chain", - "page": "Model Reference", - "title": "Flux.Chain", - "category": "Type", - "text": "Chain(layers...)\n\nChain multiple layers / functions together, so that they are called in sequence on a given input.\n\nm = Chain(x -> x^2, x -> x+1)\nm(5) == 26\n\nm = Chain(Dense(10, 5), Dense(5, 2))\nx = rand(10)\nm(x) == m[2](m[1](x))\n\nChain also supports indexing and slicing, e.g. m[2] or m[1:end-1]. m[1:3](x) will calculate the output of the first three layers.\n\n\n\n" -}, - -{ - "location": "models/layers.html#Flux.Dense", - "page": "Model Reference", - "title": "Flux.Dense", - "category": "Type", - "text": "Dense(in::Integer, out::Integer, σ = identity)\n\nCreates a traditional Dense layer with parameters W and b.\n\ny = σ.(W * x .+ b)\n\nThe input x must be a vector of length in, or a batch of vectors represented as an in × N matrix. The out y will be a vector or batch of length out.\n\njulia> d = Dense(5, 2)\nDense(5, 2)\n\njulia> d(rand(5))\nTracked 2-element Array{Float64,1}:\n 0.00257447\n -0.00449443\n\n\n\n" -}, - -{ - "location": "models/layers.html#Flux.Conv2D", - "page": "Model Reference", - "title": "Flux.Conv2D", - "category": "Type", - "text": "Conv2D(size, in=>out)\nConv2d(size, in=>out, relu)\n\nStandard convolutional layer. size should be a tuple like (2, 2). in and out specify the number of input and output channels respectively.\n\nData should be stored in WHCN order. In other words, a 100×100 RGB image would be a 100×100×3 array, and a batch of 50 would be a 100×100×3×50 array.\n\nTakes the keyword arguments pad and stride.\n\n\n\n" -}, - { "location": "models/layers.html#Basic-Layers-1", "page": "Model Reference", @@ -180,7 +156,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.RNN", "page": "Model Reference", "title": "Flux.RNN", - "category": "Function", + "category": "function", "text": "RNN(in::Integer, out::Integer, σ = tanh)\n\nThe most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step.\n\n\n\n" }, @@ -188,7 +164,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.LSTM", "page": "Model Reference", "title": "Flux.LSTM", - "category": "Function", + "category": "function", "text": "LSTM(in::Integer, out::Integer, σ = tanh)\n\nLong Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.\n\nSee this article for a good overview of the internals.\n\n\n\n" }, @@ -196,7 +172,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.Recur", "page": "Model Reference", "title": "Flux.Recur", - "category": "Type", + "category": "type", "text": "Recur(cell)\n\nRecur takes a recurrent cell and makes it stateful, managing the hidden state in the background. cell should be a model of the form:\n\nh, y = cell(h, x...)\n\nFor example, here\'s a recurrent network that keeps a running total of its inputs.\n\naccum(h, x) = (h+x, x)\nrnn = Flux.Recur(accum, 0)\nrnn(2) # 2\nrnn(3) # 3\nrnn.state # 5\nrnn.(1:10) # apply to a sequence\nrnn.state # 60\n\n\n\n" }, @@ -212,40 +188,40 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#NNlib.σ", "page": "Model Reference", "title": "NNlib.σ", - "category": "Function", - "text": "σ(x) = 1 / (1 + exp(-x))\n\nClassic sigmoid activation function.\n\n1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠒⠉⠉⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠚⠁⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢀⡔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠜⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠜⠁⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠚⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⢀⡤⠒⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⣀⣀⠤⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n0 │⠋⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n -3 0 3\n\n\n\n" + "category": "function", + "text": "σ(x) = 1 / (1 + exp(-x))\n\nClassic sigmoid activation function.\n\n\n\n" }, { "location": "models/layers.html#NNlib.relu", "page": "Model Reference", "title": "NNlib.relu", - "category": "Function", - "text": "relu(x) = max(0, x)\n\nRectified Linear Unit activation function.\n\n3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n0 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n -3 0 3\n\n\n\n" + "category": "function", + "text": "relu(x) = max(0, x)\n\nRectified Linear Unit activation function.\n\n\n\n" }, { "location": "models/layers.html#NNlib.leakyrelu", "page": "Model Reference", "title": "NNlib.leakyrelu", - "category": "Function", - "text": "leakyrelu(x) = max(0.01x, x)\n\nLeaky Rectified Linear Unit activation function. You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01).\n\n 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠴⠁⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠊⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠎⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂│\n-1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n -3 0 3\n\n\n\n" + "category": "function", + "text": "leakyrelu(x) = max(0.01x, x)\n\nLeaky Rectified Linear Unit activation function. You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01).\n\n\n\n" }, { "location": "models/layers.html#NNlib.elu", "page": "Model Reference", "title": "NNlib.elu", - "category": "Function", - "text": "elu(x, α = 1) =\n x > 0 ? x : α * (exp(x) - 1)\n\nExponential Linear Unit activation function. See Fast and Accurate Deep Network Learning by Exponential Linear Units. You can also specify the coefficient explicitly, e.g. elu(x, 1).\n\n 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠴⠁⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠊⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣇⠎⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢒⠖⡗⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠒⠁⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠤⠚⠉⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n-1 │⣀⣀⠤⠤⠤⠤⠔⠒⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n -3 0 3\n\n\n\n" + "category": "function", + "text": "elu(x, α = 1) =\n x > 0 ? x : α * (exp(x) - 1)\n\nExponential Linear Unit activation function. See Fast and Accurate Deep Network Learning by Exponential Linear Units. You can also specify the coefficient explicitly, e.g. elu(x, 1).\n\n\n\n" }, { "location": "models/layers.html#NNlib.swish", "page": "Model Reference", "title": "NNlib.swish", - "category": "Function", - "text": "swish(x) = x * σ(x)\n\nSelf-gated actvation function. See Swish: a Self-Gated Activation Function.\n\n 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠊⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⢀⠤⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⣒⣒⣒⣒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢒⣒⠶⠒⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠂│\n │⠀⠀⠀⠀⠉⠉⠉⠉⠉⠒⠒⠒⠒⠊⠉⠉⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n-1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│\n -3 0 3\n\n\n\n" + "category": "function", + "text": "swish(x) = x * σ(x)\n\nSelf-gated actvation function. See Swish: a Self-Gated Activation Function.\n\n\n\n" }, { @@ -260,7 +236,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.testmode!", "page": "Model Reference", "title": "Flux.testmode!", - "category": "Function", + "category": "function", "text": "testmode!(m)\ntestmode!(m, false)\n\nPut layers like Dropout and BatchNorm into testing mode (or back to training mode with false).\n\n\n\n" }, @@ -268,7 +244,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.BatchNorm", "page": "Model Reference", "title": "Flux.BatchNorm", - "category": "Type", + "category": "type", "text": "BatchNorm(dims...; λ = identity,\n initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1)\n\nBatch Normalization Layer for Dense layer.\n\nSee Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift\n\nIn the example of MNIST, in order to normalize the input of other layer, put the BatchNorm layer before activation function.\n\nm = Chain(\n Dense(28^2, 64),\n BatchNorm(64, λ = relu),\n Dense(64, 10),\n BatchNorm(10),\n softmax)\n\n\n\n" }, @@ -276,7 +252,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.Dropout", "page": "Model Reference", "title": "Flux.Dropout", - "category": "Type", + "category": "type", "text": "Dropout(p)\n\nA Dropout layer. For each input, either sets that input to 0 (with probability p) or scales it by 1/(1-p). This is used as a regularisation, i.e. it reduces overfitting during training.\n\nDoes nothing to the input once in testmode!.\n\n\n\n" }, @@ -284,7 +260,7 @@ var documenterSearchIndex = {"docs": [ "location": "models/layers.html#Flux.LayerNorm", "page": "Model Reference", "title": "Flux.LayerNorm", - "category": "Type", + "category": "type", "text": "LayerNorm(h::Integer)\n\nA normalisation layer designed to be used with recurrent hidden states of size h. Normalises the mean/stddev of each input before applying a per-neuron gain/bias.\n\n\n\n" }, @@ -316,7 +292,7 @@ var documenterSearchIndex = {"docs": [ "location": "training/optimisers.html#Flux.Optimise.SGD", "page": "Optimisers", "title": "Flux.Optimise.SGD", - "category": "Function", + "category": "function", "text": "SGD(params, η = 0.1; decay = 0)\n\nClassic gradient descent optimiser with learning rate η. For each parameter p and its gradient δp, this runs p -= η*δp.\n\nSupports inverse decaying learning rate if the decay argument is provided.\n\n\n\n" }, @@ -324,7 +300,7 @@ var documenterSearchIndex = {"docs": [ "location": "training/optimisers.html#Flux.Optimise.Momentum", "page": "Optimisers", "title": "Flux.Optimise.Momentum", - "category": "Function", + "category": "function", "text": "Momentum(params, η = 0.01; ρ = 0.9, decay = 0)\n\nSGD with learning rate η, momentum ρ and optional learning rate inverse decay.\n\n\n\n" }, @@ -332,7 +308,7 @@ var documenterSearchIndex = {"docs": [ "location": "training/optimisers.html#Flux.Optimise.Nesterov", "page": "Optimisers", "title": "Flux.Optimise.Nesterov", - "category": "Function", + "category": "function", "text": "Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)\n\nSGD with learning rate η, Nesterov momentum ρ and optional learning rate inverse decay.\n\n\n\n" }, @@ -340,7 +316,7 @@ var documenterSearchIndex = {"docs": [ "location": "training/optimisers.html#Flux.Optimise.ADAM", "page": "Optimisers", "title": "Flux.Optimise.ADAM", - "category": "Function", + "category": "function", "text": "ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)\n\nADAM optimiser.\n\n\n\n" }, @@ -429,7 +405,39 @@ var documenterSearchIndex = {"docs": [ "page": "GPU Support", "title": "GPU Support", "category": "section", - "text": "Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays and CLArrays. Flux doesn\'t care what array type you use, so we can just plug these in without any other changes.For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.using CuArrays\n\nW = cu(rand(2, 5)) # a 2×5 CuArray\nb = cu(rand(2))\n\npredict(x) = W*x .+ b\nloss(x, y) = sum((predict(x) .- y).^2)\n\nx, y = cu(rand(5)), cu(rand(2)) # Dummy data\nloss(x, y) # ~ 3Note that we convert both the parameters (W, b) and the data set (x, y) to cuda arrays. Taking derivatives and training works exactly as before.If you define a structured model, like a Dense layer or Chain, you just need to convert the internal parameters. Flux provides mapleaves, which allows you to alter all parameters of a model at once.d = Dense(10, 5, σ)\nd = mapleaves(cu, d)\nd.W # Tracked CuArray\nd(cu(rand(10))) # CuArray output\n\nm = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)\nm = mapleaves(cu, m)\nd(cu(rand(10)))The mnist example contains the code needed to run the model on the GPU; just uncomment the lines after using CuArrays." + "text": "Support for array operations on other hardware backends, like GPUs, is provided by external packages like CuArrays. Flux is agnostic to array types, so we simply need to move model weights and data to the GPU and Flux will handle it.For example, we can use CuArrays (with the cu converter) to run our basic example on an NVIDIA GPU.using CuArrays\n\nW = cu(rand(2, 5)) # a 2×5 CuArray\nb = cu(rand(2))\n\npredict(x) = W*x .+ b\nloss(x, y) = sum((predict(x) .- y).^2)\n\nx, y = cu(rand(5)), cu(rand(2)) # Dummy data\nloss(x, y) # ~ 3Note that we convert both the parameters (W, b) and the data set (x, y) to cuda arrays. Taking derivatives and training works exactly as before.If you define a structured model, like a Dense layer or Chain, you just need to convert the internal parameters. Flux provides mapleaves, which allows you to alter all parameters of a model at once.d = Dense(10, 5, σ)\nd = mapleaves(cu, d)\nd.W # Tracked CuArray\nd(cu(rand(10))) # CuArray output\n\nm = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)\nm = mapleaves(cu, m)\nd(cu(rand(10)))As a convenience, Flux provides the gpu function to convert models and data to the GPU if one is available. By default, it\'ll do nothing, but loading CuArrays will cause it to move data to the GPU instead.julia> using Flux, CuArrays\n\njulia> m = Dense(10,5) |> gpu\nDense(10, 5)\n\njulia> x = rand(10) |> gpu\n10-element CuArray{Float32,1}:\n 0.800225\n ⋮\n 0.511655\n\njulia> m(x)\nTracked 5-element CuArray{Float32,1}:\n -0.30535\n ⋮\n -0.618002The analogue cpu is also available for moving models and data back off of the GPU.``` julia> x = rand(10) |> gpu 10-element CuArray{Float32,1}: 0.235164 ⋮ 0.192538julia> x |> cpu 10-element Array{Float32,1}: 0.235164 ⋮ 0.192538 ```" +}, + +{ + "location": "saving.html#", + "page": "Saving & Loading", + "title": "Saving & Loading", + "category": "page", + "text": "" +}, + +{ + "location": "saving.html#Saving-and-Loading-Models-1", + "page": "Saving & Loading", + "title": "Saving and Loading Models", + "category": "section", + "text": "You may wish to save models so that they can be loaded and run in a later session. The easiest way to do this is via BSON.jl.Save a model:julia> using Flux\n\njulia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)\nChain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)\n\njulia> using BSON: @save\n\njulia> @save \"mymodel.bson\" modelLoad it again:julia> using Flux\n\njulia> using BSON: @load\n\njulia> @load \"mymodel.bson\" model\n\njulia> model\nChain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)Models are just normal Julia structs, so it\'s fine to use any Julia storage format for this purpose. BSON.jl is particularly well supported and most likely to be forwards compatible (that is, models saved now will load in future versions of Flux).note: Note\nIf a saved model\'s weights are stored on the GPU, the model will not load later on if there is no GPU support available. It\'s best to move your model to the CPU with cpu(model) before saving it." +}, + +{ + "location": "saving.html#Saving-Model-Weights-1", + "page": "Saving & Loading", + "title": "Saving Model Weights", + "category": "section", + "text": "In some cases it may be useful to save only the model parameters themselves, and rebuild the model architecture in your code. You can use params(model) to get model parameters. You can also use data.(params) to remove tracking.julia> using Flux\n\njulia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)\nChain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)\n\njulia> weights = Tracker.data.(params(model));\n\njulia> using BSON: @save\n\njulia> @save \"mymodel.bson\" weightsYou can easily load parameters back into a model with Flux.loadparams!.julia> using Flux\n\njulia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)\nChain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)\n\njulia> using BSON: @load\n\njulia> @load \"mymodel.bson\" weights\n\njulia> Flux.loadparams!(model, weights)The new model we created will now be identical to the one we saved parameters for." +}, + +{ + "location": "saving.html#Checkpointing-1", + "page": "Saving & Loading", + "title": "Checkpointing", + "category": "section", + "text": "In longer training runs it\'s a good idea to periodically save your model, so that you can resume if training is interrupted (for example, if there\'s a power cut). You can do this by saving the model in the callback provided to train!.using Flux: throttle\nusing BSON: @save\n\nm = Chain(Dense(10,5,relu),Dense(5,2),softmax)\n\nevalcb = throttle(30) do\n # Show loss\n @save \"model-checkpoint.bson\" model\nendThis will update the \"model-checkpoint.bson\" file every thirty seconds.You can get more advanced by saving a series of models throughout training, for example@save \"model-$(now()).bson\" modelwill produce a series of models like \"model-2018-03-06T02:57:10.41.bson\". You could also store the current test set loss, so that it\'s easy to (for example) revert to an older copy of the model if it starts to overfit.@save \"model-$(now()).bson\" model loss = testloss()You can even store optimiser state alongside the model, to resume training exactly where you left off.opt = ADAM(params(model))\n@save \"model-$(now()).bson\" model opt" }, { diff --git a/latest/training/optimisers.html b/latest/training/optimisers.html index 3515246f..de9ed075 100644 --- a/latest/training/optimisers.html +++ b/latest/training/optimisers.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

      Optimisers

      Optimisers

      Consider a simple linear regression. We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters W and b.

      W = param(rand(2, 5))
      +

      Optimisers

      Optimisers

      Consider a simple linear regression. We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters W and b.

      W = param(rand(2, 5))
       b = param(rand(2))
       
       predict(x) = W*x .+ b
      @@ -24,4 +24,4 @@ end

      If we call update, the parameters W Dense(10, 5, σ), Dense(5, 2), softmax)

      Instead of having to write [m[1].W, m[1].b, ...], Flux provides a params function params(m) that returns a list of all parameters in the model for you.

      For the update step, there's nothing whatsoever wrong with writing the loop above – it'll work just fine – but Flux provides various optimisers that make it more convenient.

      opt = SGD([W, b], 0.1) # Gradient descent with learning rate 0.1
       
      -opt() # Carry out the update, modifying `W` and `b`.

      An optimiser takes a parameter list and returns a function that does the same thing as update above. We can pass either opt or update to our training loop, which will then run the optimiser after every mini-batch of data.

      Optimiser Reference

      All optimisers return a function that, when called, will update the parameters passed to it.

      Flux.Optimise.SGDFunction.
      SGD(params, η = 0.1; decay = 0)

      Classic gradient descent optimiser with learning rate η. For each parameter p and its gradient δp, this runs p -= η*δp.

      Supports inverse decaying learning rate if the decay argument is provided.

      source
      Momentum(params, η = 0.01; ρ = 0.9, decay = 0)

      SGD with learning rate η, momentum ρ and optional learning rate inverse decay.

      source
      Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)

      SGD with learning rate η, Nesterov momentum ρ and optional learning rate inverse decay.

      source
      Flux.Optimise.ADAMFunction.
      ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)

      ADAM optimiser.

      source
      +opt() # Carry out the update, modifying `W` and `b`.

      An optimiser takes a parameter list and returns a function that does the same thing as update above. We can pass either opt or update to our training loop, which will then run the optimiser after every mini-batch of data.

      Optimiser Reference

      All optimisers return a function that, when called, will update the parameters passed to it.

      Flux.Optimise.SGDFunction.
      SGD(params, η = 0.1; decay = 0)

      Classic gradient descent optimiser with learning rate η. For each parameter p and its gradient δp, this runs p -= η*δp.

      Supports inverse decaying learning rate if the decay argument is provided.

      source
      Momentum(params, η = 0.01; ρ = 0.9, decay = 0)

      SGD with learning rate η, momentum ρ and optional learning rate inverse decay.

      source
      Nesterov(params, η = 0.01; ρ = 0.9, decay = 0)

      SGD with learning rate η, Nesterov momentum ρ and optional learning rate inverse decay.

      source
      Flux.Optimise.ADAMFunction.
      ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)

      ADAM optimiser.

      source
      diff --git a/latest/training/training.html b/latest/training/training.html index f11d1085..858d936a 100644 --- a/latest/training/training.html +++ b/latest/training/training.html @@ -6,7 +6,7 @@ m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) ga('create', 'UA-36890222-9', 'auto'); ga('send', 'pageview'); -

      Training

      Training

      To actually train a model we need three things:

      • A objective function, that evaluates how well a model is doing given some input data.

      • A collection of data points that will be provided to the objective function.

      • An optimiser that will update the model parameters appropriately.

      With these we can call Flux.train!:

      Flux.train!(objective, data, opt)

      There are plenty of examples in the model zoo.

      Loss Functions

      The objective function must return a number representing how far the model is from its target – the loss of the model. The loss function that we defined in basics will work as an objective. We can also define an objective in terms of some model:

      m = Chain(
      +

      Training

      Training

      To actually train a model we need three things:

      • A objective function, that evaluates how well a model is doing given some input data.

      • A collection of data points that will be provided to the objective function.

      • An optimiser that will update the model parameters appropriately.

      With these we can call Flux.train!:

      Flux.train!(objective, data, opt)

      There are plenty of examples in the model zoo.

      Loss Functions

      The objective function must return a number representing how far the model is from its target – the loss of the model. The loss function that we defined in basics will work as an objective. We can also define an objective in terms of some model:

      m = Chain(
         Dense(784, 32, σ),
         Dense(32, 10), softmax)